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Abstract

We construct exact solutions of the Einstein—Dirac equation, which couples the gravitational
field with an eigenspinor of the Dirac operator via the energy—momentum tensor. For this purpose
we introduce a new field equation generalizing the notion of Killing spinors. The solutions of this
spinor field equation are called weak Killing spinors (WK-spinors). They are special solutions of the
Einstein—Dirac equation and in dimension n = 3 the two equations essentially coincide. It turns out
that any Sasakian manifold with Ricci tensor related in some speciai way to the metric tensor as weil
as to the contact structure admits a WK-spinor. This result is a consequence of the investigation of
special spinor field equations on Sasakian manifolds (Sasakian quasi-Killing spinors). Altogether, in
odd dimensions a contact geometry generates a solution of the Einstein—Dirac equation. Moreover,
we prove the existence of solutions of the Einstein—Dirac equations that are not WK-spinors in all
dimensions n > 8. © 2000 Elsevier Science B.V. All rights reserved.
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0. Introduction

In this paper we study solutions of the Einstein—Dirac equation on Riemannian spin
manifolds which couples the gravitational field with an eigenspinor of the Dirac operator
via the energy—momentum tensor. Let (M", g) be a Riemannian spin manifold and denote
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by S, its scalar curvature. The Dirac operator D acts on spinor fields ¥, i.e., on sections of
the spin % bundle over M”. We fix two real parameters ¢ = +1 and A € R and consider the
Lagrange functional

Wig )= [ (8,4 elhw ¥) = (Do ¥t
The Euler-Lagrange equations are the Dirac and the Einstein equation

. 1 €
Dgy =1y, Ricg — Esgg = ZT(g.w)’

where the energy—momentum tensor T, y) is given by the formula
Te)(X,Y) = (X - Viy +Y - Vv, ¥).

The scalar curvature S is related to the eigenvalue A by the formula
A
S=F——y|%
vl

The Einstein—Dirac equation describes the interaction of a particle of spin % with the gravita-
tional field. In Lorentzian signature this coupled system has been considered by physicists
for a long time.! Recently Finster/Smoller/Yau investigated these equations again (see
{9-13]) and constructed symmetric solutions in case that an additional Maxwell field is
present.

The aim of this paper is the construction of families of exact solutions of these equations,
i.e, the construction of Riemannian spin manifolds (M", g) admitting an eigenspinor ¥ of
the Dirac operator such that its energy—momentum tensor satisfies the Einstein equation
(henceforth called an Einstein spinor). We derive necessary conditions for the geometry of
the underlying space to admit an Einstein spinor. The main idea of the present paper is the
investigation of a new field equation

. A
Ric(X) -y — ——X - ¢
n—2

Vi = — " S+ —
X¢_2(n—1)S V’J’(n—z)s

- X.dS.
+ 2(n — 1S v
on Riemannian manifolds (M”, g) with nowhere vanishing scalar curvature. For reasons
that will become clear later, we call any solution v of this field equation a weak Killing
spinor (WK-spinor for short). It turns out that any WK-spinor is a solution of the Einstein—
Dirac equation and that, in dimension n = 3, the two equations under consideration are
essentially equivalent. In Section 4 we study the integrability conditions resulting from the
existence of a WK-spinor on the Riemannian manifold. We prove that any simply connected
Sasakian spin manifold M2+ (m > 2) with contact form 7 and Ricci tensor

—m +2 2m* —m -2

Ric = g+ n®n
m-—1 m—1

Isee, e.g., Bill and Wheeler, Interaction of neutrinos and gravitational fields, Rev. Mod. Phys. 29 (1957)
465-479. We thank Andrzej Trautman for pointing out to us this reference.
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admits at least one non-trivial WK-spinor, and therefore a solution of the Einstein-Dirac
equation (Theorem 6.1). We derive this existence theorem in two steps. First we study
solutions of the equation

Vx¥ =aX -y +bn(X)n- ¢,

the so-called Sasakian quasi-Killing spinors of type (@, b) on a Sasakian manifold. It turns
out that, for some special types (a, b), any Sasakian quasi-Killing spinor is a WK-spinor
(Theorem 6.2). Second, using the techniques developed by Friedrich and Kath (see [16—
18]) we prove the existence of Sasakian quasi-Killing spinors of type (+ %, b) (see Theorem
6.3). Altogether, in odd-dimension the contact geometry generates special solutions of the
Einstein—Dirac equation. On the other hand, in even dimension we can prove the existence of
solutions of the Einstein-Dirac equation on certain products M6 x N” of a six-dimensional
simply connected nearly Kihler manifold M6 with a manifold N” admitting Killing spinors
(see Theorem 7.1). The main point of this construction is the fact that M® admits Killing
spinors with very special algebraic properties [20]. These solutions of the Einstein—Dirac
equation are not WK-spinors, thus showing that the weak Killing equation is a much stronger
equation than the coupled Einstein-Dirac equation in general. The paper closes with a more
detailed investigation of the three-dimensional case.

The present paper contains the main results of the first author’s doctoral thesis, defended
at Humboldt University Berlin (see [23]) in the summer 1999. It was written under the
supervision of and in cooperation with the second author. Both authors thank Ilka Agri-
cola for her helpful comments and Heike Pahlisch for her competent and efficient I&TgX
work.

1. The geometry of the spinor bundle

Let (M", g) be an n-dimensional connected smooth oriented Riemannian spin mani-
fold without boundary, and denote by X' (M) or simply X' the spinor bundle of (M", g)
equipped with the standard hermitian inner product (, ). We denote by (, ) := Re(,) its
real part, which is an Euclidean product on 3. We identify the tangent bundle T (M) with
the cotangent bundle T*(M) by means of the metric g. Then the Clifford multiplication
y: T(M)®r X (M) —> X (M) by avector can be extended in a natural way to the Clifford
multiplication y : A(M) Qg X' (M) — X' (M) by a form, and we will henceforth write
the usual Clifford product as well as this extension as “-” . With respect to the hermitian
inner product (, ) we have

(@Y1, ¥2) = D2y 0 gn), Y v € T, w e ANM)
(X -9, Y - 9)=gX, D)y, (Z-¥,¢)=0, X, Y, ZeTM).
Now we briefly describe the realization of the Clifford algebra over R in terms of complex

matrices. This realization will play a crucial role when we discuss a decomposition of
the spinor bundle X' (Section 6) and when we deal with tensor products of spinor fields
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(Section 7). The Clifford algebra C1(R") is multiplicatively generated by the standard basis

(et, - - ., e,) of the Euclidean space R" and the following relations:
eiej +eje; =0 fori #j and erer = —1.
The complexification Cl(IR")C = CI(R")®RC is isomorphic to the matrix algebra

M(2™, C) for n = 2m and to the matrix algebra M (2”; )M (2"; C) forn = 2m + 1. In
this paper we use the following realization of these isomorphisms (compare [15]). Denote

_[(¥Y-1 o {0 V-1
8=V o —v=1)r ET\VE o )

(A ) el

and let a(j) be

N )1 if j is odd,
)= [2 if j is even.

(i) In case that n = 2m, we obtain the isomorphism CI(R”)C = M (2™, C) via the map:

et—>TQ - QT Qg(HR®ER---QE.
m— s’
[(j—1)/2]~times

(i1) In case that n = 2m + 1, we obtain the isomorphism CI(R")C =M@ CypM@2™, C)
viathemap (j = 1,...,2m):

ei—> | TQ® - QT @8(H®ER---QE, T®---QT ®g,()®EQ---QE]|,

[(j—1/2)]-times [(j—1/2)]-times

eomr— [ V-1T® - ®T, —vV=1T®---®T
[ i
m-times m-times
Let us denote by V the Levi-Civita connection on (M", g) as well as the induced covariant

derivative on the spinor bundle X'(M) and denote by D the Dirac operator of (M", g).
Using a local orthonormal frame (E}, ..., E,) we have the local formulas

1 , -
Ve =Vi—3 ) TiEEj-¥, Dy=3) E-Vgi,
i<j =1
where  ; = Ex () is the derivative of Y € I'(X¥) towards Ej, and F,fj are the Christoffel
symbols with Vg, E; =31 Fk’j E;. We will use the following purely algebraic lemma.

Lemma 1.1. Let  be a spinor field on (M", g) such that the set {x € M" : yr(x) # 0} is
dense. Suppose that there is a real-valued function f : M" —> R and a (real) vector field
X such that fr 4+ X -y = 0 holds. Then f and X vanish identically.
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Remark 1.1. This principle applies in particular to non-trivial spinor fields r satisfying
the differential equation D = hir for some real-valued function h : M" — R (see [4]).

We finish this section by summarizing some formulas we need concerning different
curvature tensors. Let R(X, Y)(Z) = VxVyZ — VyVyZ — Vix y1Z be the Riemann
curvature tensor of (M”, g) and denote by R(X, Y)() = VxVyy — VyVxyr — Vix .y
the curvature in the spinor bundle. Using the notation

Rijxi = R(E;, Ej, Ey, Ey) .= —g(R(E;, Ej)Ey, EY)
and
n
Rj1 =Ric(Ej, E) := ) Rujui,
u=1
we have

1 1
RX.)(Y) = -7 ZR(Eu, Ey, X, Y)Ey- By -y = —SR(X. Y) - ¢,

u<v

Ric(X) - ¢ =2 Eu R(Ey, \)¥) ==Y Ey- R(Ey, X) - ¥,

u=1 u=1
n
Sy =—) E,-Ric(E))-¥=-2 Y RyuEi Ej E-E -V,
u=1 i<jk<l

where S denotes the scalar curvature of (M", g). We recall here a basic but very useful
formula, which is stronger than the Schrédinger—Lichnerowicz formula (D? = A + /4,
see [29]).

Lemma 1.2, For any spinor field  and any vector field X on (M", g), one has

1 n
SRic(X) - ¥ = D(Vx¥) = V(DY) = 3 Eu- Vo, x¥,

u=1
where (E|, ..., E,) denotes a local orthonormal frame. This formula will be called “the

(3 Ricci)-formula”.

Proof. Substituting the formula R(X, Y)(¥) = VxVyy — VyVxy¥ — Vix.y)¥ into the
relation -ZI-RiC(X) -y =3 Eu- R(Ey, X)(¥), we compute

1. “
sRic(X) -y =) E, {VgVx¥ —VxVg ¥ — Vg, x1¥}
2 u=1

=D(Vx¥) = Vx(DV) + 3 _VxE, Ve ¥ — Y Eu- Vig, x1¥

u=1 u=1
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=D(Vxy) — Vx(D¥) + Y _VxE, Ve ¥

u=1

— Y Eu (Vog,x¥ ~ Yoy, ¥)
u=I1

= D(Vx¥) — Vx(Dy) — Z Ey - Vv, x¥

u=1

n
+ > (VxEu V¥ + Ey - Vyyr, V).

u=l1

For the last term one checks easily, using the Christoffel symbols Vg, E; = Y 7, I} k’ . E;,
that ZZ=1(VXEu - Ve, ¥ + Ey - Vy, g, ¥) = 0 holds for all vector fields X. O

Remark 1.2. The above (%Ricci)-formula is stronger than the Schrodinger—Lichnerowicz
formula in the sense that contracting the (%Ricci) ~formulaviathe formula Sp=-Y " _, E,-
Ric(Ey)-¢ yields the formula D? = A+S/4immediately: recall that the relation D(X-¢) =
Y1 Eu- Vg X -y —2Vxy — X - DY holds for any spinor field  and any vector field
X (see e.g. [15]). We replace X and r by E, and Vg ¢, respectively, and sum up over
v=1,...,n. Then we have

n n n
D= Y E, VgE,-Vep—2) Ve Vee— Y E, D(VEp).

u,v=1 v=1 v=1

Applying the (%Ricci)—formula and the relation ZZ:] (VxE,-VE, ¥+ E,- Vv, ¥) =0,
we immediately obtain the formula for the square of the Dirac operator:

S¢ =—Y_E,-Ric(E,) - ¢ = 4D%p — 4¢p.

v=1

2. Coupling of the Einstein equation to the Dirac equation

First we sketch a canonical way for identifying the spinor bundles X' (M), and (M),
for different metrics g and & (for details we refer to [5]): given two metrics g and A, there
exists a positive definite symmetric tensor field 4, uniquely determined by the condition
h(X,Y)=g(HX,HY) = g(X,hgY), where H := \/E. Let P, and Py be the oriented
orthonormal frame bundle of (M", g) and (M", h), respectively. Then the inverse H ! of H
induces an equivariant isomorphism bf : P, —> Py, viathe assignment (Ey, ..., E,) —>
(H7'Ey,...,H 'E,). Let us now fix a spin structure A, : @, — P, of (M", g) and
view this spin structure as a Z>-bundle. Then the pullback of A, : @, —> P, via the
isomorphism b;’ : P — P, induces a Z;-bundle Ay : Qp —> P, (which is, in fact, a



134 E.C. Kim, T. Friedrich/Journal of Geometry and Physics 33 (2000) 128-172

spin structure of (M”, #)) and a Spin(n)-equivariant isomorphism EZ 1 Qp — Qg such
that the following diagram commutes:

oh
8
O —> O

P, — P,

Lemma 2.1. There exist natural isomorphisms d,f TM) — T(M), dN,‘f (X (M) —
X (M), with

hdX, diY) = g(X,Y), (die,div)n = (o, V),
diX)- diy)=d; (X -¥), X, Y € [(TM), ¢, ¥ € [(E(M),).

In order to couple the Einstein equation to the Dirac equation by means of a variational
principle it is essential to express the behaviour of the Dirac operator under infinitesimal
changes of the metric precisely, which was done by Bourguignon and Gauduchon in 1992.
Let Sym(0, 2) be the space of all symmetric (0, 2)-tensor fields on (M”, g) and denote
by ((,)), the naturally induced metric on Sym(0, 2). An arbitrary element k£ of Sym(0, 2)
induces a (1, 1)-tensor field k, defined by k(X,Y) = g(X,k.Y). We denote by Dy«
the Dirac operator of (M", g + tk), where ¢ is a sufficiently small real number, and by
Yotk i= J§+,k1// € I'(X(M)g 1) the “push forward” of ¢ = ¥, € I'(X'(M),) via the
map g§+rk in Lemma 2.1.

Lemma 2.2 (see [5,26]). The variation of the Dirac operator is given by the formula:

~ 1
i (Deritrorn) =3 D ke(Eu) - Vi, ¥

1=0 u=1

dr

1 1.
+Z &(Trgkg) - ¥ — Zleg(kg) -,

where Tr, and divy denote the trace and the divergence, respectively. In particular, we
obtain the formula

d

1
dr (Dg+tk¢’g+tk, ll’g-f—tk)g-f—tk = _Z((T(g,\//)a k))g,

=0

where T(g 4 is the symmetric (0, 2)-tensor field defined by
Toy)(X,Y) i= (X - Vi + Y - V3, ¥),.

We will use the following formulas for the variation of the volume form w and the scalar
curvature S.
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Lemma 2.3 (see [3]). Let (M", g) be compact, and for any k € Sym(0, 2), denote by

Ug+ik and Sgiri the volume form and the scalar curvature of (M " g+ tk), respectively.
Then the following equations hold:

d 1
. =3 ’ k )
dr|,_y Hg+tk 2((8 Nelte
d .
1 [ Sernsne == [ (Ric. oy
t =0
M M

Now we state the main result of this section.

Theorem 2.1. Let M" be a Riemannian spin manifold. A pair (g,, ¥,) is a critical point
of the Lagrange functional

W(g. ¥) = f (Se + MW, ¥)g — (Det. Wity (A ER)

U

for all open subsets U of M" with compact closure if and only if (g,, ¥,) is a solution of
the following system of differential equations:

1 £
Dgyr =AY and Ric, — Esgg = ZT(g,\//)-

Proof. Let ¢ = ¢, be a spinor field and consider a symmetric (0, 2)-tensor field k on
(M", g). Then, applying Lemmas 2.1-2.3, we compute at ¢ = 0 that

d

EW(g+tk,1/f+t(p)

——d—W( +tk, ) + dW( ¥+ 1)
TR ’ a " ® ¢

d
=% f{sg+tk + A (Wgatk, Ygrtk)g+ik — E(DgarxWgrtks Wogttk)g+tk Hbg+rk
U

d
ro f (A + 10, ¥ + 19)g — 6Dy (¥ + 19). ¥ + 19)g ity
U

d d
= E /Sg+tkﬂg +fsgﬂg+tk + E/‘E)\(‘//, ‘//)gllvg-!-tk
U U U

d d
-5 / T / (D, W)ggsnk
U U

d d
t5 / EA(Y + 19, ¥ +19)gtte — / e(Dg(Y¥ +19), ¥ +1@)glq
U U
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. 1 1
- f((Rng, k))gﬂg + ‘2‘ f((Sgg’ k))gllvg + E /((6)»(1//, llf)gg’ k))gite
U U U
1 1
+ Z /((ET(g,w), K)gtg — 5 /((E(Dgw’ ¥)e8, k))gﬂg
U U

+ 2/(5)‘1//’ ‘P)gllvg - 2/(5Dg1//v ©)gle
U U

———f((—Ric +1Sg+—€)‘(w t/f)g—f(Dt/H#)g+fT k)) u
\ 8T 58 5 ¥ ¥e g\ ¥ Ve 4 @¥) . g
U

+ /(28M// —2eDgr, )iy,
U

Therefore, a pair (g,, ¥,) is a critical point of the Lagrange functional W (g, ) for all open
subsets U of M" with compact closure if and only if it is a solution of the equations

. 1 EA
—Ric, + ESgg + >

Inserting the second equation into the first one yields Ric, — %Sgg = (e/NTy). O

W ¥)gg — §<ngf, V)eg + §T<g.u,> =0 and Ay =Dy.

By rescaling the spinor field ¥ we may assume that the parameter € equals +1.

Definition 2.1. Let (M", g) be a Riemannian spin manifold (n > 3). A non-trivial spinor
field  on (M", g) is a positive (resp. negative) Einstein spinor for the eigenvalue A € R if
it is a solution of the equations

Dy =iy and Ric—3Sg==%}Ty,

where Ty (X, Y) := (X - Vyy + Y - Vx, ¥) is the symmetric tensor field defined by the
spinor field .

Example 2.1. Suppose (M", g) carries aKilling spinor ¢ of positive (resp. negative) Killing
number b € R. Then ¢ := /4(n — 1)(n — 2)[blp/|p] is a positive (resp. negative) Einstein
spinor for the eigenvalue A = —nb. In this case (M", g) is an Einstein manifold with Ric =
4(n — 1)b’g.

Remark 2.1. For any Riemann surface (M?, g) we have Ric — %Sg = 0. Consequently,
we always assume that the dimension of the manifolds is at least 3.

Remark 2.2. Let ¢ be aspinorfieldon (M", g) and T, the induced symmetric (0, 2)-tensor
field. A straightforward computation yields the following expression for the divergence of
T,:

8(Tp) = Y Ty B/ =Y (Vi (D@), 9) — (Vi;0, D) — (Ej - (D*¢), 9)}E/.
i,j=1 j=1
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In particular, 8(Ty) = 0 if ¢ is an eigenspinor of the Dirac operator. Together with the
fact that §(Ric — %S g) = 0 this implies that the second differential equation Ric — %Sg =
(e/4)Ty of the Einstein-Dirac equation has a natural coupling structure.

Remark 2.3. Let us denote the space of all eigenspinors of the Dirac operators D with
eigenvalue A by E; (M", g) and the set of all the positive (resp. negative) Einstein spinors for
the same eigenvalue A by ES;'E(M", 2). Then ESit(M", g)isasubsetof E; (M", g), but not
avector space. Considerthemap A : E,(M", g) — Sym(0, 2) defined by  — :I:%Tll,.
Then ES;E (M",g) = A~{Ric — %Sg} is the inverse image via the map A of the point
Ric — %Sg € Sym(0, 2). Moreover, the group S' acts on ESAjE (M", ).

Remark 2.4. Suppose that i is an Einstein spinor on (M", g). Coniracting the equation
Ric — %Sg = :I:%T]/,, we obtain
A 2
S=F— P
n—2

In particular the scalar curvature does not change its sign and the Einstein spinor
vanishes at some point if and only if the Ricci tensor vanishes.

3. A first order equation inducing solutions of the Einstein-Dirac equation

Our aim in this section is to present a new spinor field equation that is geometrically
stronger than the Einstein—Dirac equation and generalizes the well-known Killing equation.
The following lemma contains the key idea which leads us to the formulation of this new
spinor field equation.

Lemma 3.1. Let  be a non-trivial spinor field on (M", g) such that
Vx¥ =na(X)Yy + X)) Y+ X -y

holds for a 1-form « and a symmetric (1, 1)-tensor field B and for all vector fields X. Then
Y has no zeros and « as well as B are uniquely determined by the spinor field v via the
relations

_ Ay Ty
““-nyr ™ P TaE

In particular, the I-form a is exact.

Proof. Since v is a solution of a first order ordinary differential equation on any curve in
M", i does not vanish anywhere. We compute a:

X, ¥) =2(Vx¥, ¥) = 2na(X) (¥, ¥)
—2a(X)(W, ¥) = 2(n — Da (X)W, ¥).
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Using a local orthonormal frame, we now verify the second relation:

Ty(Ei,Ej)= Y (BYEi-Ex- ¥ +BE;-Er-¥,¥)

k.l=1

=—B+ D@ v =-28i(w,¥). O

Corollary 3.1. Suppose that the scalar curvature S of (M", g) does not vanish anywhere.
Let ¢ be a positive (resp. negative) Einstein spinor with eigenvalue A such that

Vx¥ =na(X)y +8(X) -y + X -a- ¥

holds for a 1-form @ and a symmetric (1, 1)-tensor field 8 and for all vector fields X. Then
a as well as B are uniquely determined by

ds 2x

A
= d = ic — ——1Id.
o 20— 1§ and B ic

" R
(n —2)S n—2

Proof. This follows directly from Lemma 3.1 by inserting Ty, = +4(Ric — %Sg) and
Y2 =F((n —2)/1)S. O

Definition 3.1. Let (M", g) be a Riemannian spin manifold whose scalar curvature S does
not vanish at any point. A non-trivial spinor field » will be called a weak Killing spinor
(WK-spinor) with WK-number ). € Rif i is a solution of the first order differential equation

2w A
dSQ)Y + = Rie(X) ¥ = X -y

n
VXV = 5= 1S (n—2)8 2

1
+—-X-dS ¢
2(n — DS v
Remark 3.1. The notion of a WK-spinor is meaningful even in case that the WK-number
A is a complex number. In this paper we study only the case that A # 0 is real. However,
the examples of Riemannian spaces M" with imaginary Killing spinors (see [2]) show that
Riemannian manifolds admitting WK-spinors with imaginary Killing numbers exist.

In case (M", g) is Einstein, the above equation reduces to Vxyy = —(A/n)X - ¥ and
coincides with the Killing equation. Together with the following theorem, this justifies
the name; however, notice that the vector field Vi (X) = ~/—1(X - ¥, ¥) associated to a
WK-spinor is in general not a Killing vector field. Using the formula S¢ = — %", | E,, -
Ric(E,) - ¥, one checks easily that every WK-spinor of WK-number A is an eigenspinor of
the Dirac operator with eigenvalue A. WK-spinors occur in the limiting case of an eigenvalue
estimate for the Dirac operator (see Section 5) and they are closely related to the Einstein
spinors, as we will explain in the next theorem.

Theorem 3.1. Let v be a WK-spinor on (M", g) of WK-number A with LS < 0 (resp.
AS > 0). Then ||/ is constant on M"™ and ¢ = \/(n — DISI/IMIW 12y is a positive
(resp. negative) Einstein spinor to the eigenvalue \.
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Proof. Using Lemma 3.1 and Corollary 3.1 we compute the differential of [ 12/8:

d(W)_ Sd(lyP)—1y[?dS  S2(—DIY(dS/2(n—DS)}—|¢|*dS
s ) 52 N s2 -

0’

i.e., |¥|?/S is constant on M”". Since |v|?/S is constant on M”", ¢ is a WK-spinor of WK-
number A. Moreover, |¢|?> = (n — 2)|5|/|A| and the equation Ric — %Sg = :E%Tw follows
now by a direct calculation. O

We investigate now the spinor field equations on three-dimensional manifolds and prove
that in case the scalar curvature does not vanish, the Einstein—Dirac equation on (M 3 g)is
essentially equivalent to the weak Killing equation. Notice that for the Clifford multiplica-
tion in dimension n = 3 the relations E| - £y = —FE3, Ey - E3 = —FE|,E3- E] = —E»
hold.

Lemma 3.2. Let i be a spinor field on (M?>, g) without zeros. Then there exists a I1-form
w and a (1, 1)-tensor field y such that

V¥ =o(X)Y +y(X)- ¥

holds for all vector fields X. Moreover, w and y are uniquely determined by the spinor field
¥ via the relations = d(1y|2)/2|¥1? and y (X) = La_(Vx V¥, Eu - ¥)(Eu/I¥ ).

Proof. The real dimension of the Spin(3)-representation equals 4 = 3 4 1. Consequently,
if we fix a non-zero spinor ¢1, then any other spinor ¢; is of the form g2 = V - ¢ +ag for
aunique vector V € R’ and a unique scalar a € R. Using this algebraic fact we can express
the spinor field Vx iy as Vx ¥ = o (X)¢ + y(X) - ¢ for a 1-form w and a (i, 1)-tensor field
y. Now one easily verifies the formulas for w(X) and y(X). O

Lemma 3.3. Let Y be a nowhere vanishing spinor field on (M>, g) and assume that it is
a solution of the Dirac equation Dy = hyr for some function h : M> —> R. Then there
exists a I-form a and a symmetric (1, 1)-tensor field B such that

V¥ =3aX) +B(X) ¥+ X o ¢ =20(X)Y + (X) -y — (xa)(X) - ¥

holds for all vector fields X, where x denotes the star operator. Moreover, o and B are
uniquely determined by the spinor field i via the relations

_ dqy)
Ayl

Ty
21y 1>

Proof. On account of Lemma 3.2, we have Vx¢¥ = o(X)¢¥ + y(X) - ¥ with w =
d(ly /2191 and y (X) = Y o_ | (Vx ¥, Ey - ) (Eu/(¥[?). Weseta := o = d(1y[?)/
4))? and let B8 and T be the symmetric and the skew-symmetric part of y, respectively.
Then we obtain

ﬁ:
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3 3
Dy=2) aE -~ AY—-2) TE E-¥
=1 =1

u<v

=-Tr(B)Y + 21 + THE1 - ¥ + 2@ — 1) E2 - ¥ + 2(e3 + 1) E3 - .
Because of Dy = h, this implies
h=-Tr(f) and o+t =0 —173 =a3+71; =0.

We identify t with a two-form and can thus rewrite the latter equation in the form ¢ = —t.
In the three-dimensional Clifford algebra this equation yields the relation

tX)=a(X)+ X -,
and therefore, we obtain

Vx¥ =20(X) -y + BX) ¥y +1(X) ¥ =3a(X) ¥+ (X)) ¥y + X -a- ¢
The formulas o = d(|¥|?)/4|¥|? and B = —Tn///2|1/f|2 are consequences of Lemma
31. O

Theorem 3.2. Suppose that the scalar curvature S of (M3, g) does not vanish at any
point. Then (M?>, g) admits a WK-spinor of WK-number A with AS < 0 (resp. AS > 0)
if and only if (M3, g) admits a positive (resp. negative) Einstein spinor with the same
eigenvalue A. .

Proof. Let vy be a positive (resp. negative) Einstein spinor of eigenvalue A. We first note
that since S = FA|¥ |, the Einstein spinor ¥ has no zeros. By Lemma 3.3 there exists a
1-form « and a symmetric (1, 1)-tensor field 8 such that

V¥ =3a(X)¥ +BX) - ¥+ X -a- .

By Corollary 3.1 we conclude that

45 nd B 2A pic — A1d
o = — an = —/—KkiIC — s
45 S

i.e., ¥ is a WK-spinor of WK-number A with AS < O (resp. AS > 0). DO
4. Integrability conditions for WK-spinors

In order to study the geometric conditions for the Riemannian manifold (M", g) in case
it admits a WK-spinor or Einstein spinor, we first establish some formulas that describe the

action of the curvature tensor on the WK-spinor.

Lemma 4.1. Let i be a non-trivial spinor field on (M", g) such that

Ve =na(DY +B(Z) -V +Z-a-¢



E.C. Kim, T. Friedrich/Journal of Geometry and Physics 33 (2000) 128-172 141

holds for a 1-form a and a symmetric (1, 1)-tensor field 8 and for all vector fields Z. Then
the following relations hold for all vector fields X, Y :
® RX, VYY) =Y -Vxa - ¢ =X -Vya ¥+ (VxB)(T) - ¥ = (VyB)X) - ¥

+{BX)-BX) = BX)- B} ¥ +a* ¥ - X —X V) ¢
+2e(Y, )X o ¥ ~2g(X, )Y - -y +2g(B(Y), )X - ¥
- 2g(B(X), )Y - ¥,

(ii) Ric(X) - ¢ = (4n — 8)|e*X - ¥ — (4n — 8)a(X)a - ¥ + (2n — ) Vxa - ¢

—2) X-E,-Veo-y+4X-B@) -y
u=l1

— (4n = 8)g(a, BXNY —4hp(X) - ¥ —4(Bo B)(X) - ¥
+2) Ey (Ve B)(X) -y —2dh(X)Y,
u=1
(iii) R =18+ (n - D) — (n — D(n—2)|a) + 8%,
where h := —Tr(B) and o := — 3", _ | ;.

Proof. The first and second statement follow immediately from the formulas for the cur-
vature tensors in Section 1. We will prove the last statement (iii). Let us substitute the
relation Vzy = na(Z)y + B(Z) - ¥ + Z - «a - ¥ into the formula for the Laplace operator
Ay =—-3 0 Ve, VE Y + ) _ Vv, E,¥. Then we have

AY =n@a)y — (n — D(n — Dlal*y =201 — D@ - ¢
=Y BLE W — Y BBYE, Ey-¥—) E,-Vpa-y,

u,v=1 u.v,w=I u=1
and therefore
Ay, ¥) = {(n — DGa) — (n — Dn — Dl + B1P)W, ¥).

The relation D>y = dh - ¥ + h%y and the Schrodinger-Lichnerowicz formula yield now
the last statement (iii). O

Remark 4.1. One easily verifies that the third statement (iii) in Lemma 4.1 cannot be
obtained by contracting the second relation (ii).

Theorem 4.1. Suppose that the scalar curvature S of (M", g) does not vanish anywhere.
Let us assume that (M", g) carries a WK-spinor  of WK-number A. Then we have the
identities

@) 4(n — D22*(n — 3)8*X - ¥ — 2(n — 4)SRic(X) - ¥ — 4(Ric o Ric)(X) - ¢}
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+2(n — 1)(n — 2)A{(n — 2)SAS(X)¢¥ — 2(n — 2)dSRic(X)y¥
—SX-dS-¢¥ +2X -Ric(dS) - ¥ —2(n — 1)dS - Ric(X) - ¥

+2(n — S Y E, - (VE,Ric)(X) - ¥/}

u=}
= (n—2)*{(n — 1)2S?Ric(X) - ¥ + |dS’X - ¢ + (n — DS(AS)X - ¥
+n(n —2)dS(X)dS - ¥ — (n — 1)(n — 2)S(Vx dS) - ¥},

(ii) 4(n — DAX{(n* — 5n + 8)S? — 4|Ric|*}
= (n—2)*{(n — 1DS> +n|dS)* +2(n — 1)S(AS)},
(iii) 4(n — 122 — 3)8° — 2(n — 9 SIRic|* — 4TrRic)} (¥, ¥)

+4(n = (1 = 2DAS Y (Eu - (VE,Ri)(E,) - ¥, Ric(Ey) - ¥)

u,v=1
= (n — 2)%((n — D*S?[Ric|* + S| dS|* + (n — 1)S2(AS)
+ n(n —2)g(dS ® dS, Ric)
— (n — D(n — 2)Sg(Hess(S), Rio)} (¥, ¥),
where AS = —div(gradS) and Hess(S) := V(dS) is the Hessian of the function S.

Proof. We apply Lemma 4.1 in the case of a WK-spinor (@ := dS/2(n — 1)S and 8 :=
2A/(n — 2)S)Ric — (A/(n — 2))Id). Then we obtain (i) and (ii) immediately. Using the
first equality for Ey, ..., E,,, multiplying it by Ric(E}) - ¥, ..., Ric(E,) - ¥, and summing
up we obtain the statement (iii). O

Integrating equation (ii) in Theorem 4.1 and using f,, S(AS) = f,, | dS|?> we obtain a
necessary condition for the existence of a WK-spinor.

Theorem 4.2. Let (M", g) be compact with positive scalar curvature S. If |Ric|? > %(n2 -
5n + 8)52 at all points, then (M", g) does not admit WK-spinors.

The equations of Theorem 4.1 are simpler in case that (M”, g) is either conformally flat or
Ricci-parallel (VRic = ().

Lemma 4.2 (see [21]). Let (M™, g) be a conformally flat Riemannian manifold with con-
stant scalar curvature S. Then we have (VxRic)(Y) = (VyRic)(X) for all vector fields
X, Y.

Theorem 4.3. Let (M”, g) be a conformally flat or Ricci-parallel Riemannian spin mani-
fold with constant scalar curvature S # 0 and suppose that it admits a WK-spinor. Then
the following two equations hold at any point of M" :
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(i) 4SRic? + {n(n — 3)$2 — 4|Ric|®}Ric — (n — 3)S31d = 0,
(ii) 4|Ric|* — 4S{TrRic*)} — n(n — 3)S2[Ric|> + (n — 3)S* = 0.
In particular, the Ricci tensor is non-degenerate at any point for n > 4.

Proof. We consider the case that (M", g) is conformally flat. The case of VRic = 0 is
similar. Let ¥ be a WK-spinor on (M", g) of WK-number A # 0. By Lemma 4.2 we know
that

n
Y Ey - (Ve,Ric)(E,) - ¥
v=1
n
- Ruw;va - Ey 'r/f

v,w=I1

x

==Y Ruw¥+ Y (RuwwEy Ew- ¥ + RuyiwEw - Ey - ¥)

=1 v<w
1
- _Es,ul// + Z Ryvuw(Ey - Ey + Ey - Ey) - =0
v<w

forall 1 < u < n. From (1), (ii) and (iii) of Theorem 4.1 we obtain

@ 42%{(n — 3)8%1d — 2(n — 4)SRic — 4 Ric o Ric} — (n — 2)28? Ric = 0,
m =1 (n ~2)°8’
4 (n2 — 5n + 8)S? — 4|Ric[>’
D 2ol (n — 2)>5?|Ric|?

T 4(n—3)5® - 2(n — 4 S|Ric)? — 4 Tr(RIS)

respectively. By inserting (II) into (I) we obtain the first equation (i) of the theorem. In
particular, if n > 4, the Ricci tensor is non-degenerate at any point. Equations (II) and (III)
yield the second equation (ii) of the theorem. O

As an immediate consequence of the preceding theorem, we shall list some sufficient
conditions for a product manifold not to admit WK-spinors. Later on, we shall be able to
make more refined non-existence statements for WK-spinors on product manifolds.

Corollary 4.1. Let (M?, gy) and (N9, gn) be Riemannian spin manifolds. The product
manifold (M? x N9, gy x gn) does not admit WK-spinors in any of the following cases:
(i) (M?, gy)and (N4, gn) are both Einstein and the scalar curvatures Sy, Sy are posi-

tive (p,q > 3).

(il) (MP, gp) is Einstein with Sy > 0 and (N2, gn) is the two-dimensional sphere of
constant curvature (p > 3).

(iii) (M2, gpr) and (N2, gN) are spheres of constant curvature.

(iv) (MP, gp) is Einstein and (N9, gn) is a g-dimensional flat torus (g=1,p=>=3).
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Proof. For all the cases (i)-(iv) the Ricci tensor of the product manifold (MP? x N9, gas x
gn) is parallel. Moreover, one easily checks that each of these cases does not satisfy the
second equation (ii) in Theorem 4.3. O

We next investigate the case that (M", g) is conformally flat and Ricci-parallel.

Lemma 4.3 (see [21]). Let (M™, g) be conformally flat with constant scalar curvature S
(n > 4). Then we have

(2n — 1)S|Ric|? 53
m—=D@r-2) @-Dn-2)

[VRic? = —A([Ric|?) — LzTr(Ri&) +
=

Lemma 4.4. Let (M", g) be a Riemannian manifold with constant scalar curvature S and
suppose that it admits a WK-spinor. Then, in case

(i) S > 0 is positive, the inequality S?/n < [Ric|? < L(n® — 5n + 8)S? holds.

(ii) S < 0 is negative, the inequality |Ric|* > (n* — Sn + 8)S? holds.

Proof. We observe that g(Ric — (§/n)g, Ric — (§/n)g) = [Ric|? — (Sz/n) > 0 holds. If
(M", g) admits a WK-spinor ¢ of WK-number A, then we obtain from Theorem 4.1 (i)
the equation A2 = }((n — 2)28%/(n? — 5n + 8)S2 — 4|Ric]>). O

Theorem 4.4. Let (M", g) be conformally flat, Ricci parallel and with non-zero scalar
curvature (n > 4). If M" admits a WK-spinor, then

(1) (M", g) is Einstein if S > 0,

(ii) the equation |Ric|> = ((n° — 4n* + 3n + 4)/4(n — 1))S? holds if S < 0.

Proof. By Theorem 4.1 (ii) IRic|? is constant and so it follows from Lemma 4.3 that

(2n — 1)S|Ric|? B s3
nn—1) nn—1)

Tr(Ric’) =

Inserting the latter equation into Theorem 4.3(ii) we obtain
(n|Ric|> — §2)(4(n — DIRic)® — {n(n — 1)(n — 3) + 4}§%) = 0.

In case of [Ric|?> = $?/n, the space (M", g) is Einstein, so every WK-spinor is a real
Killing spinor and hence S > 0. In case of IRic|? = ((n® — 4n® +3n + 4)/4(n — D)§? >
((n® — 5n + 8)/4)$%(n > 4), we see from Lemma 4.4 that § < 0. O

We are now able to construct classes of manifolds that do not admit WK-spinors. First we
examine manifolds (M", g) admitting a parallel 1-form . Let £ be the dual vector field of
n with |§| = 1. The Ricci curvature in the direction of £ is zero, Ric(§) = 0. We summarize
the relation between the parallel vector field and the Dirac operator in the next lemma.

Lemma 4.5. For any spinor field ¥ on (M", g) we have

D(Ve) = Ve(DY), D(-Y)+E£-Dy+2Vey =0, D*E-y)=£-D*y.
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Theorem 4.5. A manifold (M", g) of constant scalar curvature S # 0 and with a parallel
1-form does not admit WK-spinors (n > 3).

Proof. SinceRic(§) = 0, wehave Ve = —(X/(n — 2))& 1. By applying the first relation
from Lemma 4.5 we obtain D(Vg ) = Ve (D) = AV = —(A2/(n — 2))E - . On the
other hand, using the second relation from Lemma 4.5 we calculate

A 2 A2
D(Vey) =~ D(E ) = Ve + ——& -4
_{_ﬂ__*_ 2 }g.w_(_"___i)‘zg.w
Tl m-2? a2 T o=

Thus, n = 3. In the three-dimensional case we can diagonalize the Ricci tensor at a fixed
point

Ric =

S O B
oo
oo o

Since £ = E3 is parallel, we have
Ry1 = Ri212 + Ri313 = Ri212 + R2323 = Rop,
and, therefore, A = B. On the other hand, using Theorem 4.1 (ii) we obtain
0=28)2(A— B =(A+B)=5?,
hence, a contradiction. O
‘We now return to the product situation already described in Corollary 4.1. It is of interest

that special types of product manifolds admit Einstein spinors, but no WK-spinors (see
Section 7).

Theorem 4.6. Suppose that the scalar curvature Sy of (MP, gyr) as well as the scalar
curvature Sy of (N9, gn) are constant and non-zero (p, q > 3). Furthermore, suppose the
scalar curvature S = Sy + Sy of the product (MP x N9, gy x gn) is not zero. If neither
(M?, gp) nor (N4, gn) is Einstein, then the product manifold (MP x N9, gy X gn) does
not admit WK-spinors.

Proof. Let i be a WK-spinor of WK-number A. Then Vyy = B(X) - ¥ with 8 :=
2Ar/(n — 2)SRic — (A/(r — 2))Id and A 5~ 0. Since the scalar curvature S is constant, we
obtain

24 .
(VxB)(Y) = (n——Z)_S(VXRlC)(Y)'

Consequently, if X is tangent to the manifold M” and Y is tangent to N9, we have

(VxB)(¥) =0 = (Vy B)(X).
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Since neither M” nor N4 is Einstein, there exist vectors X, and Y,, such that (X,) # 0 #
B(Y,). On the other hand, by Lemma 4.1 we have

0=R(X0, Yo)(¥)
=(Vx,B)Xo) - ¥ — (Vy,B)(Xo) - ¥ + B(Yo) - B(Xo) - ¥ — B(Xo) - B(Yp) - ¥
=BY,) - B(Xo) - ¥ — B(Xo) - B(Yo) - ¥ =2B(Y,) - B(X,) - ¥,

and we conclude ¢ = 0, a contradiction. O
In a similar manner we can prove the following facts:

Theorem 4.7. Suppose the scalar curvature Sy of (MP, gm) (p = 3) is constant and
non-zero. If the scalar curvature Sy of (N1, gn)(q > 1) equals identically zero, then the
product manifold (M? x N1, gy x gn) does not admit WK-spinofrs.

Theorem 4.8. Suppose that (M?, gy) as well as (N4, gn) are Einstein and that Sy # 0,
Sy # 0,8 = Sy + Sv # 0 (p,gq = 3). If the product manifold MP? x N7 admits

WK-spinors, then either (p —2)Sy + pSy =0o0rqSy + (g — 2)Sy = 0 holds.

Theorem 4.9. Let (MP, gp) be an Einstein space with scalar curvature Sy # 0 and
(N9, gn) be non-Einstein with constant scalar curvature Sy # 0 (p, g = 3). Suppose that
Sy + Sn # 0and MP x N9 admits a WK-spinor. Then we have (p —2)Sy + pSy = 0.

5. An eigenvalue estimate for Einstein spinors

In this section we prove an estimate for the eigenvalue A corresponding to an Einstein
spinor. The following lemma is motivated by Lemma 3.1.

Lemma 5.1. Let & be a nowhere vanishing eigenspinor of the Dirac operator D with
eigenvalue A € R. Then the following inequality holds at any point x € M":

S T 2 A 2 d 2312
2> _+| ¢|4+ (Ix/f|2)+ n|d(|y| )14’
4 A4yl 2yl 4(n — DIyl
where Ty (X, Y) = (X - Vyyp + Y - Vb, V). Equality holds if and only if there exists a
non-trivial eigenspinor | of D as well as a I1-form a| and a symmetric (1, 1)-tensor field

B1 such that
Vxy1 =nai(X) -1 + (X)) - ¥+ X - a1 - ¥
for all vector fields X.

Proof. For a fixed nowhere vanishing eigenspinor v we define a new covariant derivative
V for any spinor field ¢ by the formula

Vxg =Vxp—na(X)g —(X) - ¢ —X -,
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where
d(v, ¥) T,

= d = — R

by ™M PET Y

Then we have at any point of M":
Vv, Vi) = (VY, Vl/f)+n(n— Dlal? ('lf ¥ + 1B, ¥)
—2n2av(v5vvf w>+22(ﬂ(E) Ve Vs ¥).

v=] v=1]

On the other hand, one easily checks the following relations:

S 1
VY, V) = A2y, ¥) — 1V =S80,

" ld(y, ¥
u V s = - 1 » 2 P NN
;“ Ve, ¥) = (= DO, Plal” = 2250 =
: 4, ¥)

v=I
Therefore, we obtain
nldw, P Ty
=D, ¥) 4@y~

The limiting case follows immediately from Lemma 3.1. O

. S 1
Vv, Vi) = A%(y, V=30 V=580 9 -

Theorem 5.1. Let (M", g) be a Riemannian spin manifold with non-vanishing scalar cur-
vature S. If (M", g) admits a positive (resp. negative) Einstein spinor for an eigenvalue
0 # X € R, then the following inequality holds at any point:

(n —2)*
“4(n-1)

A2 ((n? = 5n + 8)S%— 4|Ric|*} > ((n — DS+ n|dSP+2(n — DS(AS)}.

Proof. By contracting the relation Ric — Sg =41 1 Ty we obtain A(Y, ¥) = F(n — 2)S.

Substituting |7y |> = 16|Ric|>+4(n— 4)S2 and (y, w) F((n — 2)/A)S into the inequality
of Lemma 5.1 yields the desired result. O

By integrating both sides of the inequality in Theorem 5.1, we obtain the following
generalization of Theorem 4.2.

Corollary 5.1. Let (M", g) be a compact Riemannian spin manifold with positive scalar
curvature. If |Ric|? > %(n2 — 5n+8)S? at any point, then (M", g) does not admit Einstein
spinors.

Remark 5.1. Consider a two or three-dimensional Riemannian spin manifold and let
¥ be any nowhere vanishing eigenspinor of the Dirac operator. Then we have Vxi =
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na(X)¥ + B(X) - + X -« - ¢ for a I-form a and a symmetric (1, 1)-tensor field g (see
Lemma 3.3). Thus one is in the limiting case of the inequality in Lemma 5.1 for all such
spinor fields y on (M", g) ifn = 2,3.

Remark 5.2. As one sees from the second equation (ii) in Theorem 4.1, any WK-spinor
realizes the limiting case of the inequality in Theorem 5.1. Moreover, in case (M", g) is
Einstein, this inequality reduces to A2 > (n/4(n — 1))S and coincides with Friedrich’s
inequality (see [14]).

6. Solutions of the WK-equation over Sasakian manifolds

In this section we study the geometry of the spinor bundle over Sasakian manifolds. To
prove the existence of WK-spinors (which are not Killing spinors) we will decompose their
spinor bundles and apply the techniques introduced by Friedrich and Kath (see [16-18]). In
recent papers by Boyer and Galicki ([6,7]) one finds an excellent exposition of Sasakian—
Einstein geometry and the meaning of Killing spinors therein. Let M>"*! be a manifold of
odd dimension 2m + 1, m > 1. We recall that an almost contact metric structure (¢, &, 7, g)
of M?"t1 consists of a (1, 1)-tensor field ¢, a vector field £, a 1-form 5, and a metric g with
the following properties:

@) =1 ¢*X)=-X+nXE g@X ¢Y)=_gX.Y)—nX)n®).
In our considerations, the fundamental 2-form @ of the contact structure defined by
X, Y)=gX, 0(Y))

will play an important role. There are several equivalent definitions for a Sasakian structure
(see [6,7,33]). In this paper we will use the following one:

Definition 6.1 (see [33]). An almost contact metric structure (¢, £, 7, g) on M>"+1 is a
Sasakian structure if

(Vxp)(¥) = g(X, ¥)§ —n(1)X

holds for all vector fields X, Y.

In some calculation we will use an adapted local orthonormal frame
El’ ET = ¢(E1)1 EZ, E—z‘ = ¢(E2)7 LR ] EM7 Eﬁ - ¢(Em)- S'

Then the Christoffel symbols have the following properties:

_Fkl2m+l = allc’

i i i i _ i _
TG~ T=0 IG+hs=0 Tg..\=

i i _ i i _
Fk2m+l - FEZm-}—l - F2m+12m+1 - F2m+12m+1 - 0’
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foralll <i, j,k <mandl < u < 2m + 1. The Riemann curvature tensor and the Ricci
tensor have some special symmetries that we will use in our proofs:

2m+1
Ric(X, Y) = 3 Z g(@{R(X, 9Y)E,}, Ey) + Cm — Dg(X, Y) + n(X)n(Y),

u=1

g(R(¢X, ¢Y)(@Z), ¢W) = g(R(X, Y)Z, W) + n(Y')n(W)g(X, Z)
—n()(Z)g(X, W) — n(X)n(W)g(, Z)
+ n(Xn(Z)g(Y, W).

We reformulate the latter identities using the components of the Ricci and the curvature
tensor.

Lemma 6.1. On any Sasakian manifold (M?" %!, ¢, &, n, g), we have
m m

i) Rii=Rg=Y Rij+@m—18;, Rj=-R;=-) R:,
i=l i=1
Rom+12m+1 =2m,  Rjymi1 =Ry, =0 (I <j,l<m).
@) Rgg=Ryu, Rjg=Rg, Riji==EKg
Rim = ~Rijur RBija = —Riju

Ri2m+lk2m+1 = R{2m+1Z2m+1 = aik (1 =< i, ja kyl =< m)

In all the other cases, Ry, = 0 as soon as one of its indices equals 2m + 1.

Assume that the almost contact metric manifold (M 2m+l ¢, &, n, g) has a spin structure.
Then one verifies, just as in the case of almost Hermitian spin manifolds (see [15]), that the
spinor bundle of (M?™+1, ¢, &, 7, g) splits under the action of the fundamental 2-form &.

Lemma 6.2. Let (M>"+1 ¢, &, n, g) be an almost contact metric manifold with spin struc-
ture and fundamental 2-form ©. Then the spinor bundle X splits into the orthogonal direct
sumX =XoD X1 D---D X, with

() @5, =v/-12r—md, dim(Z,)=(7) O=<r=m),

.. 2m+1 2m+1
i) élsenere. = W=D W {élrenene.=-~D" .
Moreover, the bundles Xy and Xy, can be defined by

So={Y e X :¢pX) ¥ +V=1X ¥+ (=D n(X)¥ = 0 for all vectors X },
.=y €T :0X) ¥ —/—1X - — n(X)¥ = O for all vectors X }.

In particular, we have the formulas

£-Yo=(=D"V—1¢, @ -Yo=-mv/~1¥o, o€ Zo,
E-Ym=vV—1¥m, D Yuy=mV—1¥pn, VYme€ En.
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Lemma 6.3. Ler (M1, ¢, &, 1, g) be a Sasakian spin manifold with fundamental 2-form
®. For all vector fields X, Y, Z and spinor fields  we have
D) X-@-¢—0 X -y =26(X) ¥,
(ii) (VxP)(¥, Z) = n(Y)g(X, Z) — n(Z)g(X. Y),
(i) (Vx®) ¢ =—-X-£-¥ —n(X)y.

Proof. Since X @ =X AP —ix(@P)and P - X = P A X + ix (D), we have
X - &—-@ X ==2ix(®)=-2(—¢X) =2¢(X).

The second formula (ii) is easy to verify. Using (ii) we prove the last identity

(Vx®) -y =— Z{g(X, EQE -+ g(X, EpEL-§)- ¢
k=1

=—{X-§-gX, 68} Yy ==X -§-y—nX)¢¥. D

For Sasakian spin manifolds, another new spinor field equation closely related to WK-
spinors deserves special attention.

Definition 6.2. Let (M2"t! ¢, &, n, g) be a Sasakian spin manifold. A non-trivial spinor
field  is a Sasakian quasi-Killing spinor of type (a, b) if it is a solution of the differential
equation

Vx¥ =aX -y +bn(X)§- ¢,

where a and b are real numbers.

Any Sasakian quasi-Killing spinor of type (a, b) is an eigenspinor of the Dirac operator
of eigenvalue A = —(2m + 1)a — b. First we compute some relations between the Killing
pair (a, b) of a Sasakian quasi-Killing spinor and the geometry of the Sasakian manifold.

Lemma 6.4. Letusassume that (M4, ¢, £, 0, g) admits a Sasakian quasi-Killing spinor
Y of type (a, b). Then we have
(i) Ric(X) - ¢ = (8ma? +4ab)X - + 2bp(X) - & - ¥ + 2m — 8ma® — 4ab)n(X)& - ¥,
(ii) 2b® - ¥ = m(1 — 4a® — 4ab)& - .
In particular, the scalar curvature S and |Ric|* are constant and given by
S = 8m(Q2m + 1)a* + 16mab,
IRic|® = (8ma? + 4ab)(16m*a” + 16ma” + 24mab — 4m) + 8mb’ + 4m*.

Proof. Using the (%chci)-formula, an adapted frame and the properties of the Christoffel
symbols of a Sasakian manifold mentioned before we obtain after direct calculations:

Ric(E) - ¥ = (8ma’® + 4ab)E; - + 2bE; - § - ¥,
Ric(Ep) - ¥ = (8ma® + 4ab)E; - — 2bE; - & - ¥,
Ric(§) - ¥ = 4b® - ¥ + 8ma(a + b)E - .
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On the other hand, we know that Ric(§)-y = 2mé& -y, and hence, the first two statements are
proved. Contracting the first equation (i) via the formula Sy = — Zi'gﬂ E, -Ric(Ey) -y,
we obtain S = 8m(2m + 1)a® + 16mab. We calculate ZﬁZTI(Ric(E,,) -, Ric(Ey) - ¥)
and apply the second relation (ii). Then the formula for |Ric|? follows directly. O

Lemma 6.5. Let ¥ be a Sasakian quasi-Killing spinor on (M*"*1 ¢, &, 1, g) of type
(a, b).
G Ifa = % and b # 0, thenm = Omod 2, ¥ € I'(Xy) is a section in Xy and

Ric = 2m +4b)g —4bn ® 1.

@) Ifa = —% ,b#0andm = 0mod 2, then € I'(Zy) is a section in X, and
Ric = 2m — 4b)g +4bn ® 1.

(iii) Ifa = —% ,b#0andm = 1mod 2, then € I'(Xy) U I'(X,) is a section in X
orin Xy and Ric = 2m — 4b)g + 4bn ® 1.

Proof. If a = :I:% and b # 0, then Lemma 6.4(ii) gives ® - ¥ = Fmé - . Thus the
statements follow from Lemma 6.2 and Lemma 6.4(1)). O

We formulate now the main existence theorem for WK-spinors on Sasakian manifolds.
We exclude the three-dimensional case (m = 1) in this section because we will study the
WK-spinor equation on three-manifolds in Section 8 in more detail.

Theorem 6.1 (Existence of WK-spinors on Sasakian manifolds). If(M>"*! ¢, &, n, g)is
a simply connected Sasakian spin manifold (m > 2) with
-m+2 2m? —m —2

Ric = g+ n&®n,
m—1 m—1

then there exists a WK-spinor (which is not a Killing spinor).

Remark 6.1. In this case the scalar curvature S = 2m/(m — 1) > 0 is always positive.
Moreover, if m = 2, the rank of the Ricci tensor equals 1 and if m > 3, the Ricci tensor is
non-degenerate.

We divide the proof of Theorem 6.1 into two steps. Theorem 6.2 relates the notion of a
Sasakian quasi-Killing spinor to the notion of a WK-spinor.

Theorem 6.2. Let v be a Sasakian quasi-Killing spinor of type (:I:%, b) withb # 0 (m >
2). Then s is a WK-spinor if and only if b = F(2m? —m — 2) /4(m — 1).

Proof. We prove the case that a = % the other case that a = —% being similar. By
Lemma 6.5 we know that Ric = (2m + 4b)g — 4bn ® 7. Substituting Ric(X) - ¢ =
(2m +4b)X - ¢ — 4bn(X)& - ¢ into

Ric(X) - ¢ — X-u’f=lX-1/f+bn(X)E~1/f,

Vew = 22
= om=1ns 2m—1 2
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we obtain
{(2m — 1)S — 4A(2m + 4b) + 2AS}X - ¥ + 2{(2m — 1)bS + 8ABI(X)E - ¥ =0,

which implies (2m — 1}S — 4A(2m + 4b) 4+ 2S5 = (2m — 1)bS + 81b = 0. Inserting
S =2m(2m+4b)+2mand A = —%(Zm-i—l)—b we conclude that b = —(2m? —m — 2)/
4m—1). 0O

For the proof of the second step of our main theorem we need a special algebraic property
concerning the decomposition of the spinor bundle of a Sasakian manifold.

Lemma 6.6. Let (E, ..., Ex, £) be an arbitrary adapted frame on (M*"+1, ¢ £, 1, g)
(m > 3). Then we have forall o,y € I'(Xo ® Xy,)

(Ex-Ep-o,¥)=(Ex-Ej-0,¥)=0 (I1<k<l=<m),
(Ep-Ez-9.¥)=(Ep-Eq-9,¥)=0 (I=p#q=m),
(Er-&-9,¥)=(Er-§-0,¥)=0 (I1=r=m).

In case of m = 2, the same relations are true for all ¢, \ if both belong to one of the bundles
o or 2.

One can prove the identities of Lemma 6.6 using an explicit representation of the Clifford
algebra.

Theorem 6.3. Let (M?"t!, ¢, £, 1, g) be a simply connected Sasakian spin manifold (m >
2). Then the following statements hold for all b € R :
@) If m = 0 mod 2: there exists a Sasakian quasi-Killing spinor € I'(Xy) of type

(3, b) if and only if Ric = (2m + 4b)g — 4bn ® n.

(ii) If m = 0 mod 2: there exists a Sasakian quasi-Killing spinor & € I'(Zy,) of type
(=1, b) ifand only if Ric = (2m — 4b)g + 4bn ® 1.

(iil) If m = 1 mod 2: there exist Sasakian quasi-Killing spinors o € I'(Xy) , ¥m €
I'(Zn) of type (—%, b) if and only if Ric = (2m — 4b)g + 4bn ® 1.

Proof. We prove the first statement (i), the other two statements can be proved similarly.
With respect to Lemma 6.5 we should prove that the equation Ric = (2m +-4b)g —4bn®n
implies the existence of a Sasakian quasi-Killing spinor of type (%, b). We define a new
connection in the spinor bundle X by

Vg = Vxp = 31X -9 = bn(X)é - ¢.
Using Lemmas 6.2 and 6.3 we calculate for any section ¥ of Xy :
®-(Vxy) =@ (Vx¥ — 35X - ¥ —bn(X)E - ¥)

= Vx(®-¥) = (VxP) - — 38 - X - ¥ —by(X)P -§- ¥
=—mV=1Vxy + X - £ Y +10Y — 35X - @ - ¥ —20(X) - ¥)
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—bn(X)P - (V—1%¢)
m
=—-mv—-1Vx¥ +v-1X -y + n(X)v + EV_IX <Y
—vV=1X - = n(X)¥ —mbn(X)y
= —mV/=1(Vx§ — 53X - —bn(X)E - ¥) = —m/=1(Vx¢).
This implies that V is indeed a connection in Xy. Now we prove that the curvature
RX,Y)(@) :=VxVyp —VyVxo — Vix v

of the new connection V vanishes in Xy, i.e., the bundle (X, V) is flat. For all sections ¢
of X, direct calculation yields

RX, Y)N@)=RX, V)@ + (XY —Y-X)-¢—2bg(X,9Y)E - ¢
—bn(X)Y - £-p+bn()X - -9
+bn(Y)p(X) - ¢ —~ bn(X)@(Y) - o.

Let pg : ¥ —> X be the natural projection and v an arbitrary section of X. Then, using
Lemmas 6.1, 6.2 and 6.6 we have forall 1 < k,] < m:

— 1 — 1 z
PO{R(Ek, El)(')[f)} =pPo {_E ;RﬁklEi : El- ')[f} = Ppo {_E V-1 ;R,,‘kﬂ/f}
= po{3V—-1Rz¥} =0
as well as
_ 1 & 1
Po{R(Ex, E))(¥)} = po I—E Z RiiEi Ep- ¥ + 5 =1duv + 2b81 v —Wf]
i=1

=—5vV=1po{(Ris — 2m — 1)8 — 1 — 4b&) ¥}
= — v/ ~1po{(@2m + 4b)dy — 2mby; — 4bd) ¥} = 0,
Po{R(Ex, £)(¥)} = po{bEg - ¥} = 0.

Similarly, one verifies that

Po{R(EL, Ep(¥)} = po{R(EL, EY(¥)} = po{R(Ef. £)(¥)} = 0.

Consequently, there exists a non-trivial section ¥y of Xy with Vyo=0. O

In case of b = 0, Theorem 6.3 coincides with the result proved by Friedrich and Kath
(see [16-18]).

Corollary 6.1. Let (M?"+1, ¢, &, 1, g) be asimply connected Sasakian—Einstein spin man-

ifold (m > 2). Then

(i) if m = 0 mod 2, there exists a Killing spinor yo € I'(Xy) with Killing number % and
a Killing spinor V¥, € I' (¥y,) with Killing number —%,
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(ii) if m = 1 mod 2, there exist at least two Killing spinors oo € I'(Xo), ¢om € I (Xm)
with Killing number — %

Remark 6.2. Let a = :l:%, b # 0 in Theorem 6.3. Then the number of independent
Sasakian quasi-Killing spinors of this type is, by Lemma 6.5, precisely two (yry € I'(Zp)
and ¥y € I'(Zy)).

Following the arguments used by Friedrich and Kath we will construct Sasakian spin mani-
folds (M2 +1 ¢, &, n, g) withRiccitensorRic = ((—m + 2)/(m — 1))g+((2m* —m — 2)/
(m—1D)n@n.

Example 6.1. Let (N>™, J, g) be asimply connected Kahler-Einstein manifold with scalar
curvature S # 0. Then there exists a U(1)- or [Rl—principal fibre bundle p : o L
N2™ over (N?™, J, g) with the following properties:

(i) Q¥"+! has a Sasakian structure (¢, £, 7, g0)-

(ii) The Ricci tensor of (Q¥"+!, ¢, &, n, go) is given by

S S
Ricp = — -2 2 2— — .
co <2m )gQ+<m+ 2m>n®n
(iii) Q¥™*! is simply connected and has a spin structure.

Proof. Consider the fundamental form £2 of the Kihler-Einstein manifold (N2, J, g) as
well as the 2-form

[—ifz] =1 (N?™)
4mm
representing the first Chern class ¢y (N Zmy of N2 Let k be the maximal integer such that
(1/k)c (N 2my is an integral cohomology class. Then there exists a U (1)- or Rl-pﬂncipal
fibre bundle p : Q2! — N?™ and a connection A such that Q*+1 is simply connected
(see [18]) and

1 1
el (QMt 5 N2y = — —_[dA] = —c|(N?™)
27 k
and F = dA = (S/2km)p*(£2). Let us define a 1-form 7, a vector field £ and a metric go
on Q2m+1 by

dkm S
= —A, =—V, = p* ,
n S 3 T go=pg+tndn
where V denotes the vertical fundamental vector field of the U (1)- or R'-action on QZ”H’1
corresponding to the element +/—1 € v/—I1R! of the Lie algebra of U(1) or R'. We define

the map ¢ : TQ*"+! — T Q¥+ by

pXM = (X)) and ¢©):=0,
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where XH denotes the horizontal lift of a vector field X on N2, Let (E, Ef, ..., Em, Ex)
be a local orthonormal frame on (N2, J, g) with J (E)) = Ej, J(E;) = —E| and consider
its horizontal lift (EY', ET', ..., Ey, E. £). Then we have

4km

(ER EM = [Ey, EJY — FuV =[E,, Evl“—Fust = [Ey, EuIT — 22,8,

[EH, §1= —~—[E V]=0

Using the notations

2m

[Eu, E]=)_ (CN)iyEw,

w=I

[E EH] — Z (CQ)U) EH + (CQ)zm—HS
w=1

2m

(B} 81= ) (COiry1 By + (CO)iomr 116

w=1
we then obtain
(€l = (CNYipy  (Cohn ™ = =202,
2m+1 ) 2m+1
(CO)amrr = (CQ)u’gi_rt—H = Coomrime = (CQ)zzilzmH =0.
We rewrite these relations in terms of the Christoffel symbols as follows:
Ty =Wt (TQ3mi1y =Ty ™' = (o) ami1 = 2w,

all the other Christoffel symbols vanish. Consequently, (¢, &, n, g¢) is a Sasakian structure
on Q?"*+!. Furthermore, a direct calculation using the Christoffel symbols above proves
the result

2m
S
(RQ)/I = (RQ)ﬁ = (RN)]I - 22]9,”'9“[ = % il — 25]-1’
u=
2m
(RQ)jamit = RQ)7mi1 =00 (RO iompr = Y 2Ry =2m,
u.v=I1

where 1 < j,l<m. 0O

Remark 6.3. Let (N2" J, 8) be a compact Kihler—Einstein manifold with positive scalar
curvature S (m > 2). Rescaling the metric g we may assume that S = 2m? J(m —1).
Then, by the above example, there exists a Sasakian spin manifold (Q*"+!, ¢, &, n, go)
with the Ricci tensor Ricg = ((—m 4+ 2)/(m — 1))go + @2m? —m - 2}/ (m—1))n®n,

ie., (Q2m+1, ¢, &, n, go) admits WK-spinors not being Killing spinors.
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Finally, we investigate the behaviour of Killing spinors on Sasakian—Einstein manifolds
under a deformation of the Sasakian structure. In particular, we show that WK-spinors can
be obtained in this way. There exists a non-trivial deformation of the Sasakian structure.

Lemma 6.7 (see [30]). Let (¢, £, 1, g) be a Sasakian structure of M*"+! and consider
¢:=¢, E:=a’, Fi=aly, F=alg+G@-aHnen,

where a is a positive real number. Then (qb 7, ) is again a Sasakian structure of M Zm+1,

If (E1, Ey, ..., E,, Ez, &) is an adapted frame on (MP+! g €, n, g), then E, =
aky, E— = aE,,f;‘ = a’¢ is an adapted frame on (Mz’”*’1 6. 5,73

Lemma 6.8. The Christoffel symbols and the Ricci tensor of (M’i;"/*",g, £,%,2) and

(M2’"+1 ¢.&,1n, g) are related by

(1) Fw = aruul})’ Fu21:n+l 1-'2m+l F2ur)n+1v
0 <u,v,w <2m).

(i) Rji=a’Rji+2@ — 18, Ry =a’R;5 (1< j,l <m), § =a’S+2m(@® - 1),

In particular, if (M*" T, ¢, £, n, ) is Einstein, then the Ricci tensor Ric is given by

+(02_ 1)1"2m+l I'Vw

_ 2w
=a"I; 2m12m+1 =

2m+1lv

Ric={2m+2d®> -2+ CCm+2)(1 —a)7®7.

Proof. We write [E,, E;] = Y71 Cy E, and [E,, Eg] = Y.27{' Cr E, forall 1 <
p,q,r <2m+ 1. One easily verifies that

w w ~2m+1_ 2m+1 ~w _ 2w
C _acuv’ C - Cuv ’ um+1 — @ Cu2m+l’
Sty =aCHil, =0 (1 < = 2m),

and the lemma follows from these relations. O

Any spinor field ¥ on M 2m+1 can be identified with a corresponding spinor field w on
M+ , and the covariant derivatives V and V as well as the Dirac operator D and D are
related by the following relation.

Lemma 6.9.
~ ~ —~ -1 ~ ~ ~ —1 ~ ~
) vxw=vxw—“—¢<X)-s-w—“ n(X)® - .

(ii) Dy = aD¥ + (@® —a)g Vet — a—1)2 E-U

Proof. Using the previous formulas we can compute the covariant derivative Vinthe spinor
bundle of M2m+1:

Vg =aVe ¥ =aVgy — @~ DE-E- 7,
 Vp¥=aVe¥ =aVey +3@-DE-E- .

~

W =aVel = Ve - §@ - )8 - Jq O
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Let us denote by K, (M2™+! | ¢) the space of all Killing spinors on (M*"*!, g) with Killing
number r. Lemma 6.9 together with Lemma 6.2 yield the following theorem.

Theorem 6.4.
(1) If m=0mod 2 and Yy € K1/2(M2”'+l , 8) N I'(Xo) is a Killing spinor in Xy, then

(m+1a®>—a—

m ~ o~
o n(X)E - To.

-~ 1 ~ ~
Vx1/f0=5X~1/fo+

In particular, ¥ is a Sasakian quasi-Killing spinor on (M?';”Jr 1,6,.£,7.2) of type
(3. 3(m+ (@ —1)).
(i) If m = 0mod 2 and ¥, € K_l/z(Mz’”H,g) N I'(X,,) is a Killing spinor in X,
then
~ (m+ Da* —a—

~ o~ 1 ~
Vxy¥m = _Zx'wm - 242

P nXOE - G,

In particular, Y, is a Sasakian quasi-Killing spinor on (M2"+! §. €. %, %) of type
(=%, —3(m + D)(@* = ).

(iii) If m=1mod 2 and ¢ € K_1/2(M2’"+1 8N ('(Xo) U I'(Xy)) is a Killing spinor
in Xy orin Xy, then

~ (m+Da?—a-

~ o~ 1 ~ ~ o~
Ukl =XV - (0 -7

In particular, ¥ is a Sasakian quasi-Killing spinor on (M’27"/+1, é.£.7.%) of type
(=3, —3(m + D@ - 1)).

By Theorem 6.4 together with Theorem 6.2 we obtain the following corollary.

Corollary 6.2. Ler (M*™+! ¢ £, 1, g) be a Sasakian—Einstein spin manifold (m > 2)
and let ¢ € K11 p(M*™ 1 gy N r(zyory e Ki12(M*™ 1 gy N I'(Z,,) be a Killing
spinor. Then ¥ is a WK-spinor on (M*"+\, ¢, €. 7, %) that is not a Killing spinor if and
only ifa®> = m/2(m* — 1).

Remark 6.4. Theorem 6.3 is more general than Theorem 6.4 in the following sense: rewrit-
ing b = £(m + 1)(@®> — 1)/2 we have a* = £2b/(m + 1)) +1 > 0. Therefore, by a
deformation of Killing spinors one cannot prove the existence of Sasakian quasi-Killing
spinors of type (3,b), b < —4(m + 1), m = 0 mod 2 or of type (— %, b), b > L(m + ).

7. Solutions of the Einstein—-Dirac equation that are not WK-spinors
In this section we show that special types of product manifolds admit Einstein spinors that

are not WK-spinors. For that purpose we need some explicit algebraic formulas describing
the action of the Clifford algebra on tensor products of spinor fields. Let (M27, g) and
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(N”, gn) be Riemannian spin manifolds of dimension 2p > 2 and r > 2, respectively.
Then the product manifold (M 2P x N', gy X gn) admits a naturally induced spin structure
and the spinor bundle is the tensor product of the spinor bundles of M2” and N'. Let

us denote by (Ey, ..., E2p) and (F1, ..., F;) a local orthonormal frame on (sz, M)
and (N', gw), respectively. Identifying (£, ..., E2p) and (F7, ..., F,) with their lifts to
(M2p x N", gm x gn) we canregard (Ey, ..., Ezp, Fi, ..., F;) as a local orthonormal

frame on (M Zr « N7, gum % gn). Furthermore, we observe that if yrjs and yr are spinor
fields on (M?2P, gp) and (N”, gn), respectively, then the tensor product ¥y ® ¥y is well
defined on (M?? x N', gm X gn). Using the representation of the Clifford algebra (see
Section 1) we can describe the Clifford multiplication on the product manifold.

Lemma 7.1 (see [8]). Foralll < j <2pandl <1 <r we have
Ei-(ym®@Yn)=(E;-¥m) @ YN,
Fi-m @ ¥n) = =17 (ua - ¥a0) ® (Fr - ),

where uy = EV A<+« A E?P is the volume form of (M*?, gy). In particular, we have

Ej - (Y ®@Yn)=(Ei-E; - ¥y) ¥y,
Fr-(Ym ®@YnN)=vYm® (Fc - Fi - Yn),
Ei F-(y®vUn)=—F-E;j-(¥u Q@ ¥n)
= (V=D"((E; - ups - ¥m) ® (Fi - )}

foralll <i,j<2pandl <k, I <r.
We denote by VM (resp. VV) the Levi-Civita connection and by Dy (resp. Dy) the

Dirac operator of (M 2p, gu) (resp. (N7, gn)). From Lemma 7.1 we immediately obtain
the following formulas for the covariant derivative V and the Dirac operator D of (M2 x

N7, gm x gn).
Lemma 7.2.
Vz(Wm @ Yn) = (Vb V) ® Yn + ¥m & (Vi z) ¥N),

D@ ® ¥n) = Dy¥ar) ® ¥y + (V—1)" (aar - ¥ar) ® (Dnwrw),
D (Y ® ¥n) = {(Dm)*¥m) ® Yn + ¥ ® ((Dn)*¥n),

where tyy : T(M x Ny — T(M), iy : T(M x N) —> T(N) denote the natural
projections.

The spinor bundle X (M?”) of (M??, gp) decomposes into X(M?P) = XH(M?P) @
3= (M?P) under the action of the volume form pp = E' A .-+ A E?P:

SEMPP) = (¢ € EM*?P):uy - ¢ = 2(V=DPy).
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We denote by 1[/;5 € I'(ZE(M?P)) the positive and negative part of a spinor field ¥ €
I (Z(M?P)), respectively. Furthermore, if we write

(oM, ¥m) = (o, ¥m) + Im{op, )/~ 1,

and in a similar way for spinor fields on the manifold N, then the following formulas

(oM @ on, Y @ YN) = (oM. ¥m){oN, ¥N)

and

(oM @ on, ¥ @ Yn) = (om, Ym)(on, ¥n) — Im{ppy, Yur)Im{on, ¥y)
hold.
Lemma 7.3. Letyrpr and yry be a Killing spinoron (M2p, gmyand (N ,gnYwith Dyiry =

A, Ay #0 € Rand Dyvy = An¥n, An # 0 € R, respectively. Let us assume that
(W o) = (W, ¥y and (X -y, ¥yy) = (X Yy, ¥ily) = O hold for all vector fields

X on M?P. Then
1A ¢ = {A+ Ay (—1)p}(w;; ® ¥n) + Ay (Y, ® ¥n) is a non-trivial eigenspinor
of the Dirac operator D on (M?P x N", gy % gn) with eigenvalue A, where A :=

+\/A%; + A%, In particular, we have (9, 9) = A{A + An (=DPYWn, Y1) (YN, Yn).
(i) Foralll <is# j<2pandl <k #1 <r we have

E -VEo+E; -Vgo=F-Vre+ F -Vge=0.
(i) Foralll <i <2pand1 <k <r we have
(Ei VE@+ Fy-VE @, ¢)=0.
(iv) Foralll <i <2pand1 <k <r we have
22
(Ei - VEp,9) = %{A + AN DY, b W, ),

A,Z
(Fi - VE@, @) = —r’l{x + AN (=DPYm, Y (WUN, YN).

Proof. We set ¢ := y}; ® ¥ and A := £,/33, + 22, Since Dy vy = Amyrj;, we see
by Lemma 7.2 that

Dy =23,(¥f, ® vn) + 2L (¥ ® ¥n) = A2y
Using this fact and Lemma 7.2 one easily verifies that

Q=AY + DY =AY @ UN) + AmWy; @ ¥n) + ANV (uy - ¥77) ® ¥n
= A+ ANCDPYYS @ YUn) +Au (Wi ® ¥n)

is an eigenspinor of the Dirac operator D. Moreover, we have

(@, 9) = MA + Ay (=DPYWpm, ¥a)(WN, UN).
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With respect to Lemmas 7.1 and 7.2, we obtain forall 1 <i <2pand1 <k <r:

A _ A2
Ve o= —ﬁ{k N (—DPYE; - ¥ ® Yy — ﬁ(a W) ® YN

2

A _ A
= —ﬁ{x +ANG=DPVE; - (3, @ Yw) — ﬁEi (¥ ® Y,

A
Vpk¢=—7N{A+AN(—1)"}¢; ® (Fi - ¥y -~ ® (Fi- ¥n)

A
=—rN{A+AN<—1)P}<—1)PFk W @ YN) S ®Yy).

Since E; - E;+E;-E;=F - F+F-F,=0foralll1 <i#j<2pandl <k#I[<r,
the second statement (ii) is clear. Furthermore, from these equations it follows that

My A% 2%
Ei -Vpo+Fy- VE,‘/”"—TN__( 1)”+ ( 1)p](Ei"/f1—;;)®(Fk"/fN)
ApA AA A
_[ MrN M( )P 4 oM N](E V)@ ),

and after multiplication by ¢:

(Ei VR o+ Fr-VEp, @)

My A% A3, .
=AM _T__( 1)”+—( DP Y E; - Yy Y Fr - Y, ¥iw)

A AN
—Am {—N + —( DP+ 2—} A+ ANCDPUE: - Y, Y (Fi - U, Un).

Using now the assumption (E; - 1,01 Y ) = (E;i - ¥, 1,01+) = 0 we conclude that (F; -
Vi@ + Fi - Vg,@, ¢) = 0. The last statement (iv) is easy to verify using the following
equations:

A A2
E  Veg= %{A F NPy ® Yn) + ﬁ(m ® ¥w),

A
Fi - Vpo= —N{A +ANCEDPH=DP (), ® ¥n)

}\M}\N

DYy ®¢y). O

Grunewald proved in 1990 that the assumption on (M2?, g) in Lemma 7.3 is satisfied in
case of a six-dimensional simply connected nearly Kéhler non-Kéhler manifold.

Lemma 7.4 (see [20]). Let (M 67, gum) be a six-dimensional simply connected nearly
Kiihler non-Kihler manifold. Then (M®, I, gur) is an Einstein spin manifold admitting at
least two Killing spinors \ry, @ with real Killing number by > 0 and —by, respectively.
Moreover, the Killing spinors Wy, @y have the following properties:
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G) (Wi ¥iy) = Wy Yag) and (937, 037) = (030 031)-
(i) (X ¥y ¥ay) = (X - 0}y, @3y) = O for all vector fields X.

Examples of six-dimensional simply connected nearly Kéhler non-Kihler manifolds are
the following homogeneous spaces (see [2]):
st = G2/SU@3), cpP’= SOB)/U®R), FA,2)=U@)/UQ) xU1Q) xUQ),
SOB)/U) x50@3), S0®)/UB), Spin@) = $3 x §3, Sp2)/U(2).

Now we prove the main result of this section.

Theorem 7.1. Let (M 6 7, gum) be a six-dimensional simply connected nearly Kihler non-
Kdhler manifold and (N”, gn) a Riemannian spin manifold admitting a Killing spinor ¥y n
with Dyyny = ANYN , AN #£ 0 € R. Rescaling the metrics gy, gn we may assume that
the scalar curvatures Sy, Sy satisfy the following relation:

Sy 3rr—19r+6+ \/(3r2 — 197 +6)* + 180r2(r — 1)

™ 5w 30r

Then the product manifold (M® x N, gy X gn) admits a positive (resp. negative) Einstein
spinor with eigenvalue — )‘%w + A?\, (resp. )‘lzw + A?\, ), where Ay # 0 € R is the eigen-
value of a Killing spinor Wy on (M®, J, g ).

Proof. By Lemma 7.3 (i) the spinor field ¢ := (A — )»N)(ED;; @ YN) + Au(¥y, @ ¥n)
is a non-trivial eigenspinor of the Dirac operator of (M® x N”, gy x gw) with eigenvalue

A==x }‘%4 + A%,. We will only treat the case of A = —,/ }‘%4 + A2, the second case of A =

\ /A%,, + A%, is similar. Let us denote by Rics and Ricy the Ricci tensor of (M 67, gm)and

(N7, gn), respectively. Then Ric = Ricp +Ricy is the Ricci tensor of (MOxN', gM XEN)
and we know that the scalar curvature S = Sy + Sy is positive. Moreover, Lemma 7.3(i1)
and (iii) directly yields the following facts:

Ricy(E;, Ej) — $Sg(Ei, Ej) = ST/(E.,E)) =0 (1<i#j<6),
Ricy (Fi, Fi) — 5Sg(Fv, F) = iT,(F, F) =0 (1 <k#1<r),
Ric(E;, Fx) — ASg(Ei, F) = 3T, (E;, F) =0 (1<i<6,1<k<r).

Therefore, ¢ is a positive Einstein spinor if and only if the following relations hold (see

Lemma 7.3 (iv)):
2

A
(1) 2Ricy (E;, Ei)—(Sm+Sn) = ?M(l — AWM, V) Wn, ¥n) (120 26),

32
(2) 2Ricy (Fi, Fr)—(Sm+Sn) = TN(?\ —ANYm, Y (Wn, ¥v) (L <k <r).
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Since Ricy (E;, E;) = Sp/6 and Ricy (Fy, Fr) = Sy/r, the relations (x1) and (x2) are
equivalent to

S 6
(k) A =AWy, Y Un, Un) = (—M —Su — SN) e

3 M
28n
= ('—— - SM - SN> T
N
By inserting A2, = 1%SM and A%\, = rSn/4(r — 1) one checks that the second equation

of (*x) is equivalent to the assumption (x) of the theorem. Moreover, one can choose the
Killing spinors v¥3s , ¥ in such a way that the first relation of (+x) is satisfied. Consequently,

the spinor field ¢ with A = —, “‘%4 + /\%, is a positive Einstein spinor. O

Remark 7.1. The product manifold (M® x N, gy x gn) of the theorem does not admit
WK-spinors (see Corollary 4.1 or Theorem 4.8), and therefore, the Einstein spinor ¢ =
A - )»N)(I[/A-; ® ¥n) + A (¥, ® Yv) cannot be a WK-spinor.

Remark 7.2. The Ricci tensor Ric of (M® x N, gy x gn) is given by Ric = (Sy/6)gm +
(Sn/r)gn. Moreover, one verifies easily using the relation (x) of the theorem that (M® x
N’, gm x gn) is Einstein if and only if r = 6 and Syy = Sn.

8. The three-dimensional case

In this section we investigate the Einstein—Dirac equation for three-dimensional mani-
folds. If the scalar curvature S has no zeros, the Einstein—Dirac equation is equivalent to
the weak Killing equation (see Theorem 3.2):

1 2x 1
V¢ = ﬁdS(X)w + ?RiC(X) Y —AX Y- 4—5(* dS)(X) - ¥

Let us assume that the scalar curvature of (M?, g) is constant, S = const # 0. Then a
WXK-spinor is a solution of the equation

Vxlp:/\{%Ric(X)w/f—X-lﬁ]

and any WK-spinor is an eigenspinor of the Dirac operator. Moreover, A and the scalar
curvature are related by the equation (see Theorem 4.1 (ii)) :

812{S% — 2|Ric|’} = §>.

Example 8.1. Consider the three-dimensional nilpotent Lie group Nil together with the
left-invariant Riemannian metric

g =g dx’ +3dy* + (dz —xdy)’.
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The Ricci tensor has rank 2 and the eigenvalues coincide:

-2 0 0
Ric=| 0 -2 0
0O 0 O

Therefore, we have 52 — 2|Ric|2 =0 and § # 0, i.e., Nil does not admit any WK-spinor.

Proposition 8.1. Ler (M3, g) be a Riemannian spin manifold of constant scalar curvature
S # 0 and suppose that M> admits a WK-spinor. Then the length |Ric|? of the Ricci tensor
is constant.

Remark 8.1. Proposition 8.1 holds in any dimension, see Theorem 4.1 (ii).

We recall that a three-dimensional Riemannian manifold is conformally flat if and only
if the tensor

S
K=-g—Ri
487
has the following property:
(VxK)(Y) = (VY K)(X).

In particular, any Ricci-parallel three-dimensional manifold is conformaliy flat.

Theorem 8.1. Let (M, g) be a conformally flat Riemannian spin manifold with constant
scalar curvature S # 0 and suppose that it admits a WK-spinor. Then S > 0 is positive,
(M3, g) is an Einstein manifold and the WK-spinor is a Killing spinor.

Proof. Theorem 4.3 yields the necessary condition
S - Ric? — |Ric|*Ric = 0.

Fix a point in M> and diagonalize the Ricci operator in the tangent space:

A 0 0
Ric=|0 B 0
0 0 C

Then we obtain the system of equations

(A+ B+ C)A> = (A> + B + CH)A,
(A+ B+ C)B*= (A’ + B>+ CHB,
(A+B+C)C*=(A>+ B> + CH)C.
We discuss now its possible solutions. Suppose first that the rank of the Ricci tensor equals 2,

A =0, B %0 % C. Then we obtain B = C. In this case the equation 8A%{5? — 2|Ric|?} =
53 yields § = 0, a contradiction. Consequently, the rank of the Ricci tensor equals 1 or
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3.If A # 0,B # 0 and C # 0, we immediately conclude A = B = C, i.e., M3 is an
Einstein space with positive scalar curvature S > 0. If the Ricci tensor has rank 1, we have

[Ric|? = §2, and therefore, we obtain A2 = —5/8. We will prove that this case cannot occur.
Letus fix an orthonormal frame E|, E>, E3 diagonalizing the Ricci tensorwith A = B =0
and C = —2. Denote by w;, the 1-forms of the Levi-Civita connection and let oy, 03, 03

be the dual frame of the vector fields E|, E», E3. Using the Ricci tensor we obtain the
following structure equations:

doty =wi3 A wiz — o1 A0y, dwi3 = w2 A w3 + 01 A o3,
dwys =wn A w13 + 03 A O3.

We compute the integrability conditions of this Pfaffian system, and in particular, we obtain
the condition

gAY AWI3 =01 A0y Awyy = 0.

Since M3 is conformally flat with constant curvature, its Ricci tensor has the property
(VxRic)(¥Y) = (VyRic)(X). This equation yields doz = 0 and w3 and w3 are multiples
of o3. Consequently, wj3 = wy3 = 0, a contradiction. O

Remark 8.2. Theorem 8.1 is analogous to Theorem 4.4 in dimension n = 3. The second
case that S < 0 is impossible in this dimension.

Example 8.2. Let M? be a surface of constant Gaussian curvature G # 0. Then M? x S!
is conformally flat and does not admit a WK-spinor.

Example 8.3. The three-dimensional solvable Lie group Sol. The Lie group Sol is an
extension of the translation group R? of the plane

0——>[R2——>Sol——>R’——>0,

where the element f € R acts in the plane via the transformation (x, y) — (e'x,e™"y). We
identify Sol with R> and then the group multiplication is given by

x5, -y, H=x+e%x y+ey,z+2).
With respect to the left invariant metric of Sol
ds? = e¥ dx? + e 2 dy? + d7?

and the orthonormal frame

, 0 0 d
El =e_Q_" E2=eZ_’ E3=_7
ax ay 0z
we calculate the Ricci tensor
0 0 O

Ric=10 0 0O
0 0 =2



E.C. Kim, T. Friedrich/Journal of Geometry and Physics 33 (2000) 128-172 165

Consequently, the Ricci tensor has rank 1 and S = —2 is constant. Denote by 1, 02, 03 the
frame of 1-forms dual to E, E>, E3. Then

do| = —0o1An03, dop=0pA03, do3=0,
and therefore, the 1-forms w;; of the Levi-Civita connection are given by
w2 =0, wp3z=-0, w3=o0.

We realize the three-dimensional Clifford algebra using the matrices

V=10 0 -1 0 -1
E‘=< 0 —JT1>’ E2=<J——1 0 ) E3=(1 o)'

Then we have
E|-Ey=E3, E, -E3=E,, E-E3=—E>.

The covariant derivative of a spinor field ¥ : Sol — C? is given by
Vxi = dy(X) — 301 (X)E1 - E3 - ¥ + 300(X)E2 - E3 - .

We will solve the equation
2.
Vxr =A[§R10(X)~w —X-W}.

Consider first the case of X = E3. Then we obtain

0
Wk
a9z

and the solution of this equation is
V(z) = exp(Az - E3) - ¥,

where ¥, = ¥, (x, y) depends on the variables x and y only. The equations for X = E}, E>
are

‘——sEI-E3-¢Yy=—A-E -V,

The spinor v, has therefore to be constant and should be a solution of the two algebraic
equations

E3 o =20, = —2A,.

We thus conclude that the three-dimensional solvable Lie group Sol does not admit WK-
spinors. Notice that any spinor field ¥ (z) = exp(AzE3) -, is an eigenspinor of the Dirac
equation on Sol, D(¥) = —Ay.
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The Riemannian 3-manifold Sol does not satisfy a further necessary condition for a 3-
manifold to admit a WK-spinor. In the formulation of this condition we use the vector
product X x Y of two vector fields on a 3-manifold defined by the formula

XxY =X - XYHE + XY = X'YHE, + (X'Y? - X’YDHE;.
Then, for all vector fields X, Y and spinor fields ¢ we have

XY -¢y=—gXYy—-XxY) 4

Theorem 8.2. Let (M3, g) be of constant scalar curvature S # 0 and assume that M>
admits a WK-spinor with WK-number ). Then we have forall 1 <k <1 <3:
@) 8A2{2Ric(Ey) — SEi} x {2Ric(E)) — SE;} + 8AS{(VE, Ric)(E))
—(VE Ric)(EQ)} = =S Ex x E; + 28> (Rjidix + Rudj)Ei x Ej.
i<j

3
(i) 822 (S Ric(X) — 2(Ric o Ric)(X)} — 4AS D E, x (V, Ric)(X)

u=1

—S$%Ric(X) =0
Proof. For shortness we set 8 := (2A/5) Ric — A Id. Then we have forall 1 <k <! < 3:

1
R(Ex ENW) ==3 D RijuEi - Ej - ¥
i<j
= (Y5, B)ED) - ¥ ~ (VES)ER) - + BED - B(Ew) - ¥
~B(Ex) - B(ED) - V.

Using the properties of the vector product and the formula
S
Rijxi = Rji8ix + Rixdj1 — Rjkdi1 — Rirdji + E(Silsjk — &ik8;1),

one verifies the first equation. From Theorem 4.1 (i) we immediately obtain the second
equation. O

Corollary 8.1. Let (M3, ¢, &, 1, g) be a non-Einstein Sasakian spin manifold of constant
scalar curvature S # 0. Assume that (M, ¢, £, 1, g) admits a WK-spinor with WK-number
A Then S =1+ +/Sand » = (2 £/5)/2

Proof. With respect to an adapted frame (E1, E7, E3 = £) we have (see Section 6)
F213=—F123=1’ ) =F232=F313=F323=0’

S
R11=R22=R1212+1=5—~1, Rz =2, Riz=Riz3=Rxn=0.
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Furthermore, a direct calculation yields the following formulas for the components R;;.«
of the covariant derivative of the Ricci tensor: Ry3.; = —Rj3.2 = §/2 — 3 (all the other
R;j.k vanish). Therefore, from Theorem 8.2(i) (in case k = 1 and [ = 2) and from Theorem
4.1(ii) we obtain

3202 + 8AS(S—6) — S2(S—4) =0 and $° = 8A%(S5? — 2|Ric|?) = 324%(S = 3).

Using these relations and the fact that (M3, ¢, £, 1, g) is non-Einstein (S # 6), we calculate
S=1£/51=02++/5/2. O

In the three-dimensional case we can prove the existence of Sasakian quasi-Killing spinors
of type (a, b) with a # :t% (see Theorem 6.3). Moreover, we will show that there exists a
Sasakian quasi-Killing spinor of type (a, b) = (—%(3 +V5), %(5 +/5)) (resp. (a, b) =

—%(3 -5, %(5 — V/5)) whichis a WK-spinor.

Theorem 8.3. Let (M3, ¢, £, 1, g) be a Sasakian spin manifold. If (M3, ¢, &, 1, g) admits
a Sasakian quasi-Killing spinor of type (a, b), then

. 13 S -2+ /44285 4F/4+28
either (a, b) = “317% or (a,b) = 1 R ) .

Proof. Let (E;, E,, Ez = &) be an adapted frame. Then we obtain —b = %(1 —4a* —4ab)
and S = 24a® + 16ab from Lemma 6.4(ii). The first equation has two solutions: a = —%
orb = % —a. O

Theorem 8.4. Let (M3, $,&, 1, 8) be a simply connected Sasakian spin manifold with

constant scalar curvature S. Then

(i) there exist two Sasakian quasi-Killing spinors Yo, 1 of type (—%, 3 — §S) such that
Yy is a section in the bundle X, (o« = 0, 1). Unless g (resp. ) is a Killing spinor,
Yo (resp. Y1) is not a WK-spinor.

(i) If S = =2, there exists a Sasakian quasi-Killing spinor '\ of type (% (=2 + /4 425),
%(4 F VA 28)). IfS = 14+/5, then there exists a Sasakian quasi-Killing spinor ¥’ of
type (—3 3 + V/5), 1(5 + /5)) which is a WK-spinor with WK-number 1 (2 + /5). If
S = 1—+/5, then there exists a Sasakian quasi-Killing spinor " of type (— ;i— B -5,
%(5 — /5)) which is a WK-spinor with WK-number %(2 — V3.

Proof. Let us introduce a connection V by the formula

Vxy:=Vx¥ —aX - ~bn(X)E - ¥ (a,b€eR).

In a first step we will show that V is a connection in Xy (resp. X)) if and only if a = —%.
We shall only treat the case of X, the second case is similar. The bundle X is defined by
one of the equivalent conditions:

Ep=—/—-1¢ or ¢X)-¢++v—1X ¢ —n(X)p =0 for all vectors X.
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For any section ¥ in this bundle we calculate

E-Vxy=E-(Vx¥ —aX -y —bn(X)§ - )
=VxE&- -¥)—Vx§- ¥ +aX &+ 2an(X)¢y + bn(X)y
=—/=1Vx¥ + ¢(X) - ¥ —av—1X - ¢ + Qa + b)n(X)¢
= —v=1Vxy —V=1X - ¥ + (XY — aV=1X - ¢ + Qa + bn(X)¥
=—V-l{Vx¢¥+(@a+ DX ¢ —Qa+b+ DnX)E - ¥}
Thus Vxl,// is a section in the bundle ¥y if and only if —a = a+1and —b = —(2a+b+1),
ie,a = —%. As for the second step, we claim that the curvature tensor R(X,Y)(p) =
VxVy<p Vny(p Vix. y](p vanishes identically in ¥ = Xy @ ¥ if and only if (a, b) =
(- 2 4 S) or (a,b) = ( (=2 £ /4 +29), 4(4 F /4 +285)). A direct calculation

yields the formula

RX,Y) @) =R(X,Y)(@) +a*(X-Y =Y -X)-¢—2bg(X,dpY)E - ¢
—2abn(X)Y - £ - @ +2abn(V)X - £ - ¢ + bn(V)$(X) - ¢
—bn(X)p(Y) - 9.

Using Rj313 = Rz323 = 1l and Ryz12 = %S — 2 we obtain

R(E1, E2)(p) = 2(S — 1 —2a* + 2b)E3 - ¢,
R(EI, E3)(p)=(—% + 2a +2ab+ b)E; - ¢,
R(E2, E3)(¢)= (3 —2a> —2ab—bB)E, - ¢

Thus R(X, Y)(¢) vanishes identically in X if and only if

1§—1-2a*+2b=—-1+2a>+2ab+b=0.

We first consider the case that (a, b)) = (— % % -z S) By the first and second step there exist

non-trivial V-parallel sections ¥ € I"(X) and 1[/1 e I'(X)),i.e., Yo and | are Sasakian
quasi-Killing spinors of type (a, b) = (—%, % - —S) Suppose that ¥ is a Sasakian quasi-
Killing spinor of the type (a, b) = (— % % 1 g5) which is a WK-spinor with WK-number
A. Inserting Ric = (15 — g + 3 — 19)

n®nandk—(S+6)/81nto

2% 1 6-S
VX1//=?Rlc(X)w/f—)»XW/f=—§X“/’+T"(X)E'l/f’

we obtain

2(§ +6) (S+6)(6-29) 1 6—S
- X a7 VXV =—X -+ ——n(X)E -
7S v+ RS nX)é -y 3 v+ 3 nX)§ -y
Therefore, S = 6 and (M 3 ¢, £, 1, g) is Einstein. All in all, we have proved the first
part (i) of our theorem. Now we consider the case that (a,b) = ( (-2+v/4+29),
4(4 F /4 +25)). Again, there exists a non-trivial section ¢ € F(E = Xo & Xy
with Vi = 0, i.e., ¥ is a Sasakian quasi-Killing spinor of type ( (-2 /4428),
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;1((4 F +/4 4+ 25)). In particular, in case S = 1 + /5, there exist a Sasakian quasi-Killing
spinor ¢’ of type (— % (1=+5), %(3 — +/3)) and a Sasakian quasi-Killing spinor ¥’ of type

—%(3 + /%), ‘1—1(5 + +/5)). By direct calculation one verifies that ¥’ is a WK-spinor with
WK-number %(2 ++/5) (¢’ is not a WK-spinor). Similarly, in case § = 1 — +/5, there
exists a Sasakian quasi-Killing spinor ¥*” of type (—%(3 — %), %(5 — +/5)) which is a
WXK-spinor with WK-number %(2 -J5. O

Remark 8.3. Let (M3, ¢, £, 1, g) be a three-dimensional simply connected Sasakian spin
manifold with constant scalar curvature S > —2. Then there exists a deformation (M3, ¢,

£, 7, ) of the Sasakian structure witha = /3 & 5/ ST 2 (inthis case S = 1 +£/5, see
Lemma 6.8(ii)) such that (M3, ¢, £, 7, 2) admits a WK-spinor with WK-number % (2 £ /5).

Example 8.4. Let (5>, g) be the standard sphere of constant sectional curvature 1. Fix a
global orthonormal frame (E1, E2, E3) such that

[Ey, B2} =2E3, [E2, E3}=2E,, [E3, Ei]l=2E>.

We define a (1, 1)-tensor field ¢ : T(S%) — T(S?) by ¢(E) = E2, $(E2) = —E; and
$(E3) = 0. Then (¢, & = E3,n = E>, g) is a Sasakian structure on the round sphere
§3, which can be deformed into a family of Sasakian structures depending on a positive
parameter such that (see Lemmas 6.7 and 6.8):

Ric = (4a®> —=2)F+4(1 —adFi®7, S=8a>-2.

If a = §(3£+/5), we have § = 1 £ /5 and hence, by Theorem 8.4, the deformed
Sasakian metric (53, ¢, £, 7, ) admits a WK-spinor with WK-number A = %(2 +/5).

Example 8.5. Let us consider the three-dimensional non-compact manifold (SL(2, R), g)
with the global orthonormal frame (E;, E7, E3):

1 O 0 1 0 1
E].—(O _1>, Ez.—(l 0), E3.—-(__1 0)

Wedefinea (1, 1)-tensorfieldg : T(SL(2,R)) — T(SL2,R)by@(E)=E>, ¢(Ez)=
—E; and ¢(E3) = 0. Then (¢, & = E3,n = E>, g) is a Sasakian structure on SL(2, R)
with Ricci tensor Rj; = Ry» = —6, R33 = 2. The deformation of this Sasakian structure
has the following Ricci tensor:

Ric = (—4a> = )7 +4(1 + a)7 @7, §=-8a2-2.

Since § = —84% — 2 # 1 —+/5forall a € R, any deformed Sasakian manifold
(SL(2,R), ¢, &, 7, g) does not admit a WK-spinor (see Corollary 8.1).

Including the group E(2) of all motions of the Euclidean plane there are nine classical
three-dimensional geometries. In Table 1 we list the types of their special spinors.

Remark 8.4. Probably there are three-dimensional Riemannian spin manifolds of con-
stant scalar curvature admitting WK-spinors that do not arise from an underlying contact
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Table 1

Space Spinor

E3 Parallel spinor

H3 Imaginary Killing <pimer
SH Real Killing spinor. W¥.-spinor
S x R! No WK-spinor

Hi\x/ R! No WK-spinor

SLy(R) No WK-spinor

Nil No WX-spinor

Sol No WK-spinor

E(2) No WK-spinor

structure. However, we do not know an explicit metric of this type. It turns out that the
existence of a WK-spinor on a three-dimensional manifold implies the existence of a vector
field & of length 1 such that its covariant derivative Vx§& is completely determined by the
Ricci tensor of the manifold. More generally, let (M>. g) be a thres-dimensione! Rieman-
nian spin manifold with a fixed (1, 1)-tensor A : T(M?) — T(M>). Any solution ¢ of the
differential equation

Vxy = AX) ¢

defines a vector field & of length 1 such that
VxE =2¢& x A(X).

Indeed, given the spinor field \ we define the vector field & by the formula
£-v =V-1y.

Differentiating the equation Vxyr = A(X) - we immediately obtain the differential
equation for the vector field &. Conversely, if & is a vector field of lengih 1 we define the
one-dimensional subbundle Xo of the spinor bundle X (M3) by the algebraic equation

So={Y s ZM): &y =1y}

The formula V x := Vxy — A(X) - ¥ defines a connection V in the bundle Xy. However,
the integrability condition of the equation Vx§ = 2§ x A(X) is not equivalent 10 the
fact that (Zy, V) is a flat bundle. We apply now this general remark to the situation of a
WK-spinor and obtain the following coroliary.

Corollary 8.2. Let (M?, g) be a three-dimensional Riemannian spin manifold «f constant
scalar curvature S # 0 and suppose that the length of the Ricci tensor |Ric)® # %SZ is
constant too. If M* admits a WK-spinor, then there exists a vector field & such tha:

v —i/ms3 2 Ric(X —x)
&= 55 2R ¢ (E 1e(X)

holds for all vectors X & T(M?3).
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We finish this section by showing the existence of a WK-spinor on a three-dimensional
conformally flat manifold that has non-constant scalar curvature (see Theorem 8.1).

Example 8.6. Let (R?, g) be the three-dimensional Euclidean space with the standard flat
metric. Let us denote by (e, €2, €3) the standard basis of R3 and by (x, y, z) the coordinates.
We now consider a conformally equivalent metric g := e~ >?g, ¢ # 0 € R. We denote by
(61, @3, €3) the global orthonormal frame on (R?, ) with ] = e, 22 = e3, €3 = e“e3. By
a direct calculation one verifies that

Iy = [} = —ce and all the other Christoffel symbols vanish,

Rii=Rp=-c%>, Rua=Rp=R;3=Rn=0,

S=-2c%%, S3=-4c% §,=8,=0,

where § « denotes the directional derivative of the scalar curvature S toward ¢;. Therefore,
the WK-equation on (R?, ) is expressed as

~ o~

C oo ~ =~ Copom ~ o~ e
SV = Ee“ez Y, Vo= —-—Z—eC ey, VoY =ce“y—iey-y,

where J = (u(x,v,2). v(x, y,2)) is a spinor field on (R3, §). We can choose J so that
J = (u(z), v(z)) depends only on the third coordinate z. Then the first two equations are
always satisfied and the WK-equation reduces to

Vy =ys=ce Y -2&- 7.
The solution is given by A = *c and

u = pe{sin(e™%) + v/~ 1 cos(e™%)},
v =+pet{cos(e™%) — v/—1sin(e )},

where p # 0 € C is a complex number. Thus J = (';) is a WK-spinor on (R3, §) with
WK-number =c.
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