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Abstract 

We construct exact solutions of the Einstein-Dirac equation, which couples the gravitational 
field with an eigenspinor of the Dirac operator via the energy-momentum tensor. For this purpose 
we introduce a new field equation generalizing the notion of Killing spinors. The solutions of this 
spinor field equation are called weak Killing spinors (WK-spinors). They are special solutions of the 
Einstein-Dirac equation and in dimension n = 3 the two equations essentially coincide. It turns out 
that any Sasakian manifold with Ricci tensor related in some special way to the metric tensor as well 
as to the contact structure admits a WK-spinor. This result is a consequence of the investigation of 
special spinor field equations on Sasakian manifolds (Sasakian quasi-Killing spinors). Altogether, in 
odd dimensions a contact geometry generates a solution of the Einstein-Dirac equation. Moreover, 
we prove the existence of solutions of the Einstein-Dirac equations that are not WK-spinors in all 
dimensions n > 8. 0 2000 Elsevier Science B.V. All rights reserved. 
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0. Introduction 

In this paper we study solutions of the Einstein-Dirac equation on Riemannian spin 
manifolds which couples the gravitational field with an eigenspinor of the Dirac operator 
via the energy-momentum tensor. Let (Mn, g) be a Riemannian spin manifold and denote 
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by S, its scalar curvature. The Dirac operator D acts on spinor fields $, i.e., on sections of 
the spin i bundle over M" . We fix two real parameters E = f 1 and h E Iw and consider the 
Lagrange functional 

The Euler-Lagrange equations are the Dirac and the Einstein equation 

where the energy-momentum tensor T(,,e) is given by the formula 

r,,,@)K Y) := (X . v;* + Y . Vi@, $). 

The scalar curvature S is related to the eigenvalue h by the formula 

The Einstein-Dirac equation describes the interaction of a particle of spin i with the gravita- 
tional field. In Lorentzian signature this coupled system has been considered by physicists 
for a long time. ’ Recently Finster/Smoller/Yau investigated these equations again (see 
[9-131) and constructed symmetric solutions in case that an additional Maxwell field is 
present. 

The aim of this paper is the construction of families of exact solutions of these equations, 
i.e, the construction of Riemannian spin manifolds (M" , g) admitting an eigenspinor $ of 
the Dirac operator such that its energy-momentum tensor satisfies the Einstein equation 
(henceforth called an Einstein spinor). We derive necessary conditions for the geometry of 
the underlying space to admit an Einstein spinor. The main idea of the present paper is the 
investigation of a new field equation 

v,+= n 2h 

2(n - 1)s 
dS(X)$ + (n _ 2)sRic(X). llr - 

1 

+ 2(n - 1)s 
X. dS.@ 

on Riemannian manifolds (M" , g) with nowhere vanishing scalar curvature. For reasons 
that will become clear later, we call any solution II, of this field equation a weak Killing 
spinor (WK-spinor for short). It turns out that any WK-spinor is a solution of the Einstein- 
Dirac equation and that, in dimension n = 3, the two equations under consideration are 
essentially equivalent. In Section 4 we study the integrability conditions resulting from the 
existence of a WK-spinor on the Riemannian manifold. We prove that any simply connected 
Sasakian spin manifold M2m+1 (m > 2) with contact form q and Ricci tensor 

-m+2 
Ric = ~ 

2m2-m-2 
,_1g-t m-1 Il@rl 

’ see, e.g., Bill and Wheeler, Interaction of neutrinos and gravitational fields, Rev. Mod. Phys. 29 (1957) 
465479. We thank Andrzej Trautman for pointing out to us this reference. 
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admits at least one non-trivial WK-spinor, and therefore a solution of the Einstein-Dirac 
equation (Theorem 6.1). We derive this existence theorem in two steps. First we study 
solutions of the equation 

the so-called Sasakian quasi-Killing spinors of type (a, b) on a Sasakian manifold. It turns 
out that, for some special types (a, 6), any Sasakian quasi-Killing spinor is a WK-spinor 
(Theorem 6.2). Second, using the techniques developed by Friedrich and Kath (see [16- 
18]) we prove the existence of Sasakian quasi-Killing spinors of type (% it b) (see Theorem 
6.3). Altogether, in odd-dimension the contact geometry generates special solutions of the 
Einstein-Dirac equation. On the other hand, in even dimension we can prove the existence of 
solutions of the Einstein-Dirac equation on certain products M6 x N’ of a six-dimensional 
simply connected nearly K;ihler manifold M6 with a manifold N’ admitting Killing spinors 
(see Theorem 7.1). The main point of this construction is the fact that M6 admits Killing 
spinors with very special algebraic properties [20]. These solutions of the Einstein-Dirac 
equation are not WK-spinors, thus showing that the weak Killing equation is a much stronger 
equation than the coupled Einstein-Dirac equation in general. The paper closes with a more 
detailed investigation of the three-dimensional case. 

The present paper contains the main results of the first author’s doctoral thesis, defended 
at Humboldt University Berlin (see [23]) in the summer 1999. It was written under the 
supervision of and in cooperation with the second author. Both authors thank Ilka Agri- 
cola for her helpful comments and Heike Pahlisch for her competent and efficient I.&TEX 
work. 

1. The geometry of the spinor bundle 

Let (M”, g) be an n-dimensional connected smooth oriented Riemannian spin mani- 
fold without boundary, and denote by E(M) or simply Z the spinor bundle of (M”, g) 
equipped with the standard hermitian inner product ( , ). We denote by ( , ) := Re(, ) its 
real part, which is an Euclidean product on .Z. We identify the tangent bundle T(M) with 
the cotangent bundle T*(M) by means of the metric g. Then the Clifford multiplication 
y : T(M) ~3% .IC (M) + _E (M) by a vector can be extended in a natural way to the Clifford 
multiplication y : A(M) 8~ E(M) --+ E(M) by a form, and we will henceforth write 
the usual Clifford product as well as this extension as “ . ” . With respect to the hermitian 
inner product (, ) we have 

(~.1Cr1,~2)=(-l)~‘~+~)‘*(~rl,~.~22), +1,$2 E Z(M), WE&M) 

(X. $, Y. 1cr> = g(X, mb12, (2 * lb, 9) = 0, X, Y, Z E T(M). 

Now we briefly describe the realization of the Clifford algebra over R in terms of complex 
matrices. This realization will play a crucial role when we discuss a decomposition of 
the spinor bundle X (Section 6) and when we deal with tensor products of spinor fields 
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(Section 7). The Clifford algebra Cl@“) is multiplicatively generated by the standard basis 

(e1,... , e,) of the Euclidean space Rn and the following relations: 

eiej + ejei = 0 for i # j and ekek = -1. 

The complexification Cl( KY)’ : = Cl(R”)@& is isomorphic to the matrix algebra 
M(2m; C) for n = 2m and to the matrix algebra M(2”; C)@M(2”; C) for n = 2m + 1. In 
this paper we use the following realization of these isomorphisms (compare [ 151). Denote 

a:=(? _q, g2:=(& q, 
T:=(& -q; E:=(:, :> 

and let a(j) be 

o(j) := 
1 if j is odd, 
2 if j is even. 

(i) In case that II = 2m, we obtain the isomorphism Cl(R”)’ Z M(2”; C) via the map: 

e,w T @ . . ’ \ 8 T @g,(j) @ E @ . . ’ 63 E. 

[(j-1)/2]-times 

(ii) In case that it = 2m + 1, we obtain the isomorphism Cl(kP)@ g A4(2m; @)$M(2m; C) 
via the map (j = 1, . . . ,2m): 

.@E, ,T@.;.@T , 

[(j-l/2)1-times 

e2m+l- 

i 

-J--rp3.yq, --J--rp.yzJq . 
m-times m-times 1 

Let us denote by V the Levi-Civita connection on (Mn , g) as well as the induced covariant 
derivative on the spinor bundle Z(M) and denote by D the Dirac operator of (M”, g). 
Using a local orthonormal frame (El, . . . , E,) we have the local formulas 

n 

vE,@ = @‘,k - 2 ‘c rL!Ei . Ej . I+, D@=~El*VE,+, 

i<j I=1 

where 1C/,k = Ek (@) is the derivative of 1+4 E r(Z) towards Ek, and I“j are the Christoffel 

symbols with VEX Ej = cy=, rlj EL. We will use the following purely algebraic lemma. 

Lemma 1.1. Let @ be a spinor$eld on (Mn, g) such that the set (x E M” : I+?(X) # 0) is 
dense. Suppose that there is a real-valued function f : M” + 03 and a (real) vector field 
X such that f pb + X . $I = 0 holds. Then f and X vanish identically. 
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Remark 1.1. This principle applies in particular to non-trivial spinor$elds @ satisfying 
the diflerential equation D$ = h+ for some real-valuedfunction h : M” - [w (see [4]). 

We finish this section by summarizing some formulas we need concerning different 
curvature tensors. Let R(X, Y)(Z) = VxVyZ - VyVxZ - V[x,ylZ be the Riemann 
curvature tensor of (M”, g) and denote by R(X, Y>($) = VxVy@ - VyVx@ - V[X,YII) 
the curvature in the spinor bundle. Using the notation 

Rijkl = R(Ei, Ej, Ek, El) I= -g(R(Ei, Ej)Ek, El> 

and 

Rj/_ = Ric(Ej, El) := 2 Rujul) 
Ll=l 

we have 

RW, Y)(llr) = -; c R(E,, Eu, X, Y)E, . E, . @ = -;W. Y). 14, 
UC” 

SI+!I = - 2 E, . Ric(E,) . @ = -2 C Rijkl Ei * Ej ’ Ek . El . @, 
u=l i<j.kd 

where S denotes the scalar curvature of (M”, g). We recall here a basic but very useful 
formula, which is stronger than the Schrodinger-Lichnerowicz formula (D2 = A + S/4, 
see [29]). 

Lemma 1.2. For any spinorjeld @ and any vectorjield X on (M”, g), one has 

where(E~,..., En) denotes a local orthonormal frame. This formula will be called “the 
(iRicci)-formula”. 

Proof. Substituting the formula R(X, Y)(e) = VXVYI) - VrVx@ - V[X,YI@ into the 
relation iRic(X) . +b = Ci=, E, 9 R(E,, X)(e), we compute 

+C(x) . @ = 2 E, . {vEuvX@ - vXvE,+ - V[E,,xl’b) 
Ll=l 

=D(Vx@) - Vx(Dllr) +-&xEu .v,$ - 2 E, . v[E,,X)$ 
Ll=l u=l 
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= D(Vx$) - Vx(Wlr) + 2VxEu. vE,@ 

U==l 

133 

n 

- c Eu * (b,, x $ - vv, E, $fr) 
u=l 

n 

= W’x$lr) - Vx(W) - c Eu * Vv,,x+ 

For the last term one checks easily, using the Christoffel symbols VEX Ej = ~~=“=, I’ij Ei , 

that Cizl Fx& + VE, 1,4 + E, . Vvx E, $J) = 0 holds for all vector fields X. 0 

Remark 1.2. The above (iRicci)-formula is stronger than the Schriidinger-Lichnerowicz 
formula in thesense that contracting the (iRki)-formula via theformula Sq = -c”,=, E,. 
Ric(E,).(p yields theformula D* = A+S/4immediately: recall thattherelation 0(X.+) = 
C~=1E,.VE,X.~-2vx~-X.Dllrh o Id f s or any spinorfield + and any vector field 
X (see e.g. [15]). We replace X and $ by E, and VE,~, respectively, and sum up over 
u= l,..., n. Then we have 

Applying the (iRicci)-formula and the relation Cizl (Vx E, . VE,, @ + E, . VV~E, @) = 0, 
we immediately obtain the formula for the square of the Dirac operator: 

n 

Sqo = - c E, . Ric(E,) . cp = 4D240 - 4A(p. 
tJ=l 

2. Coupling of the Einstein equation to the Dirac equation 

First we sketch a canonical way for identifying the spinor bundles Z(M), and .C(M)h 
for different metrics g and h (for details we refer to [5]): given two metrics g and h, there 
exists a positive definite symmetric tensor field h, uniquely determined by the condition 
h(X, Y) = g(HX, HY) = g(X, h,Y), where H := &. Let PR and Ph be the oriented 
orthonormal frame bundle of (M”, g) and (I@, h), respectively. Then the inverse H-’ of H 
induces an equivariant isomorphism bhg : Pg + Ph via the assignment (El, . . . , E,) ++= 
(H-‘El,..., H-‘E,). Let us now fix a spin structure AR : Qg --+ Pg of (M”, g) and 
view this spin structure as a &-bundle. Then the pullback of A, : Qg A Pg via the 
isomorphism bi : Ph -_, Ps induces a &bundle Ah : Qh -_, Ph (which is, in fact, a 
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spin structure of (M”, h)) and a Spin(n)-equivariant isomorphism gi : Qh --+ Qg such 
that the following diagram commutes: 

Ah I I As 

b; 
ph - p&T 

Lemma 2.1. There exist natural isomorphisms dt : T(M) -_, T(M), 2: : Z(M), -+ 

Z(M)h with 

h(d,gX, dhgY) = g(X, Y), ($YA z;llr)/z = (~0, +jg, 

(d,gX) . @j@) = 2:(X. II/>, X, Y E r(TM), (p, @ E IV(M),). 

In order to couple the Einstein equation to the Dirac equation by means of a variational 
principle it is essential to express the behaviour of the Dirac operator under infinitesimal 
changes of the metric precisely, which was done by Bourguignon and Gauduchon in 1992. 
Let Sym(O,2) be the space of all symmetric (0,2)-tensor fields on (Mn, g) and denote 
by ((, ))s the naturally induced metric on Sym(O,2). An arbitrary element k of Sym(O,2) 
induces a (1, 1)-tensor field kR defined by k(X, Y) = g(X, kRY). We denote by Dgirk 
the Dirac operator of (Mn, g + tk), where t is a sufficiently small real number, and by 
$s+tk := zi+rk$ E F(E(M),+,k) the “push forward’ of I+? = $R E F(.E(M),) via the 

map Zi+rk in Lemma 2.1. 

Lemma 2.2 (see [5,26]). The variation of the Dirac operator is given by the formula: 

d 
duggCfk(Dg+rk&+tk) = -; ~k,(E,,). “;,‘b 

dtl=n g 
u=l 

+i d(Tr,k,) . I) - idiv,(k,) . +, 

where Tr, and div, denote the trace and the divergence, respectively. In particulal; we 
obtain the formula 

$ _ (Dg+tk+g+rk, +g+rk)g+tk = -+‘cg.ili~. k))g> 
r-0 

where Tc,,el is the symmetric (0,2)-tensorjeld dejined by 

Tcg,q,,(X, Y) := (X . V;+ + Y. Vi@, Ilrjg. 

We will use the following formulas for the variation of the volume form p and the scalar 
curvature S. 
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Lemma 2.3 (see [3]). Let (M”, g) be compact, and for any k E Sym(0, 2), denote by 

Pg+tk and Sg+tk the volume form and the scalar curvature of (M”, g + tk), respectively. 
Then the following equations hold: 

d 
z r=O Pg+tk = &‘, W)g/+,, 

d 

z r=O 1 s 
Sg+tk& = - 

s 
(WC, k)lgl-Lg. 

M M 

Now we state the main result of this section. 

Theorem 2.1. Let M” be a Riemannian spin manifold. A pair (g,, tilr,) is a critical point 
of the Lagrange functional 

for all open subsets U of M” with compact closure if and only if (go, pkO) is a solution of 
the following system of differential equations: 

DR$ = h$ and Ric, - iS,g = iT(,,,,. 

Proof. Let CJI = qg be a spinor field and consider a symmetric (0,2)-tensor field k on 
(Mn, g). Then, applying Lemmas 2.1-2.3, we compute at t = 0 that 

; W(g + tk, @ + tp) 

= -$ Wg + tk, 1cr) + ;Wg, 1cI + wo> 

= iSiS g+tk + &h(@g+tk, @/g+tk)g+tk - @g+tk+g+tk, $g+tk)g+tkbg+tk 

I/ 

+ ; 
s 

W.(llr + Wo, 1cI + w),q - 4Dg(+ + wO), + + tvO)glpg 

rJ 

=$(ss,,,k~,+~s.u,+tk)+~~~iiiy.vi~~i(~+tk 

u u u 

d d -- 
dt s 

E@g+tk+rg+tk> +g+tk)g+tk& - - dt s 
Wglcr, @)g&+tk 

U u 

J S ~(4(+ + wo>, 1cr + wIgpUg 
U cl 
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Therefore, a pair (go, eo) is a critical point of the Lagrange functional W(g, +) for all open 
subsets U of M” with compact closure if and only if it is a solution of the equations 

-Ric,+ tS,g + $($, q&g - i(Ds$. $)sg + $Tcs.+) = 0 and hi/P = DQ. 

Inserting the second equation into the first one yields Ric, - i S,g = (E/~)T(~,+). 0 

By resealing the spinor field IJ we may assume that the parameter E equals f 1. 

Definition 2.1. Let (M” , g) be a Riemannian spin manifold (n 1 3). A non-trivial spinor 
field + on (M”, g) is apositive (resp. negative) Einstein spinorfor the eigenvalue h E [w if 
it is a solution of the equations 

D$=h+ and Ric-iSg=fiT+, 

where T$ (X, Y) := (X . Vr+ + Y . VX$, @) is the symmetric tensor field defined by the 
spinor field $. 

Example 2.1. Suppose (M” , g) carries a Killing spinor p of positive (resp. negative) Killing 
numberb E [w. Then 1+5 := ,/4(n - l)(n - 2)lblpo/1pJ is a positive (resp. negative)Einstein 
spinor for the eigenvalue h = -nb. In this case (W, g) is an Einstein manifold with Ric = 
4(n - l)Qg. 

Remark 2.1. For any Riemann surface (M2, g) we have Ric - ;Sg = 0. Consequently, 
we always assume that the dimension of the mancfolds is at least 3. 

Remark 2.2. Let p be a spinorfield on ( Mn , g) and TV the induced symmetric (0, 2)-tensor 
field. A straighgorward computation yields the following expression for the divergence of 
T. cp’ 

J(Tq) = 2 Tij:iEj = ~I(VE~(DW). (P) - (VE,V~ DP) - (Ej . (D2a)t ~o)lEj. 
i,j=l j=l 
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In particulai; 6(T,) = 0 if q is an eigenspinor of the Dirac operator Together with the 
fact that G(Ric - :Sg) = 0 this implies that the second differential equation Ric - ;Sg = 
(s/4) T$ of the Einstein-Dirac equation has a natural coupling structure. 

Remark 2.3. Let us denote the space of all eigenspinors of the Dirac operators D with 
eigenvalue h by Eh ( Mn , g) and the set of all the positive (resp. negative) Einstein spinors for 
the same eigenvalue h by E Sf (M” , g). Then E Sf (M” , g) is a subset of El (M" , g), but not 
a vector space. Consider the map A : Eh(M” , g) + Sym(O,2) deJned by $r H f $ T,,+. 
Then ES; (Mn , g) = A-’ {Ric - i Sg} is the inverse image via the map A of the point 
Ric - $Sg E Sym(O,2). Moreover the group S’ acts on ES,‘(M”, g), 

Remark 2.4. Suppose that $ is an Einstein spinor on (Mn, g). Contracting the equation 
Ric - $Sg = *i T+, we obtain 

In particular the scalar curvature does not change its sign and the Einstein spinor @ 
vanishes at some point if and only if the Ricci tensor vanishes. 

3. A first order equation inducing solutions of the Einstein-Dirac equation 

Our aim in this section is to present a new spinor field equation that is geometrically 
stronger than the Einstein-Dirac equation and generalizes the well-known Killing equation. 
The following lemma contains the key idea which leads us to the formulation of this new 
spinor field equation. 

Lemma 3.1. Let y% be a non-trivial spinorfield on (Mn, g) such that 

holds for a I -form a! and a symmetric (1, 1)-tensor$eld /3 andfor all vectorjields X. Then 
+ has no zeros and (Y as well as fi are uniquely determined by the spinorjeld $I via the 
relations 

dW12) 
(II= r, 

2(n - 1)1$12 and ’ = -21$12’ 

In particular the l-form a! is exact. 

Proof. Since I+? is a solution of a first order ordinary differential equation on any curve in 
M”, + does not vanish anywhere. We compute (Y: 

X(ti, 1cI) = Wx@, $1 = 2na(X>(+3 ti> 

-WW+, 1cI_) = 2(n - lkWX$, +I. 
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Using a local orthonormal frame, we now verify the second relation: 

T$(Ei, Ej) = 2 (p;Ei . Ek . @ + SiEj * Et * @, $) 
k.l=l 

= -(B, + Bi’>($, l/Jr) = -28j(@, $1. 0 

Corollary 3.1. Suppose that the scalar curvature S of (Mn, g) does not vanish anywhere. 
Let + be a positive (resp. negative) Einstein spinor with eigenvalue h such that 

VX@ = nfz(X)@ + /3(X) . $ + X. a! . + 

holdsfor a l-form (Y and a symmetric (1, l)-tensor$eld /? andfor all vectorfields X. Then 
a! as well as B are uniquely determined by 

dS 2h h 
(Y= and 

2(n - 1)s 
p = (n _ 2)SRic - ---Id. 

n-2 

Proof. This follows directly from Lemma 3.1 by inserting T,k = f4(Ric - f Sg) and 

1+12 = F((n - 2)lh)S. 0 

Definition 3.1. Let (Mn , g) be a Riemannian spin manifold whose scalar curvature S does 
not vanish at any point. A non-trivial spinor field $ will be called a weak Killing spinor 
( WK-spinor) with WK-number h E Iw if @ is a solution of the first order differential equation 

Vx@= n 
2h 

2(n - 1)s 
dS(XM + (n _ 2)sRic(X). llr - &X4 

1 

+2(n - 1)s 
X. dS.$r. 

Remark 3.1. The notion of a WK-spinor is meaningful even in case that the WK-number 
h is a complex number In this paper we study only the case that h # 0 is real. However 
the examples of Riemannian spaces M” with imaginary Killing spinors (see [2]) show that 
Riemannian manifolds admitting WK-spinors with imaginary Killing numbers exist. 

In case (Mn , g) is Einstein, the above equation reduces to Vx@ = -(h/n)X . I) and 
coincides with the Killing equation. Together with the following theorem, this justifies 
the name; however, notice that the vector field V*(X) = a(X . $, +b) associated to a 
WK-spinor is in general not a Killing vector field. Using the formula S$ = - cz=, E, . 
Ric(E,) . $, one checks easily that every WK-spinor of WK-number k is an eigenspinor of 
the Dirac operator with eigenvalue h. WK-spinors occur in the limiting case of an eigenvalue 
estimate for the Dirac operator (see Section 5) and they are closely related to the Einstein 
spinors, as we will explain in the next theorem. 

Theorem 3.1. Let $ be a WK-spinor on (Mn, g) of WK-number h with AS -C 0 (resp. 
AS > 0). Then l$12/S is constant on M” and q = J (n - 2)]S]/]h]]@12@ is a positive 
(resp. negative) Einstein spinor to the eigenvalue h. 
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Proof. Using Lemma 3.1 and Corollary 3.1 we compute the differential of I$ 12/S: 

139 

W1312H~12d~ 
s2 = 

S{2(n-l)llCr12(dS/2(n-1)S)}-lllr12dS= o 
s2 

i.e., l$r12/S is constant on Mn. Since l@12/S is constant on M”, (0 is a WK-spinor of WK- 
number h. Moreover, I cp I2 = (n - 2) I S I / Ih I and the equation Ric - i Sg = f l Tw follows 
now by a direct calculation. 0 

We investigate now the spinor field equations on three-dimensional manifolds and prove 
that in case the scalar curvature does not vanish, the Einstein-Dirac equation on (M3, g) is 
essentially equivalent to the weak Killing equation. Notice that for the Clifford multiplica- 
tion in dimension n = 3 the relations El . E2 = -E3, E2. E3 = -El, E3. El = -E2 
hold. 

Lemma 3.2. Let @ be a spinorfield on (M3, g) without zeros. Then there exists a l-form 
w and a (1, l)-tensorfield y such that 

VxlcI = 4vv+ + Y(X>~ + 

holds for all vectorfields X. Moreovel; w and y are uniquely determined by the spinorfield 
+ via the relations w = d(l~~2)/2~~~2 and v(X) = C~=l(Vx+, E, - @>Wulllcr12~. 

Proof. The real dimension of the Spin(3)-representation equals 4 = 3 + 1. Consequently, 
if we fix a non-zero spinor ~1, then any other spinor (~2 is of the form ~2 = V .pl + aqpl for 
a unique vector V E R3 and a unique scalar a E R. Using this algebraic fact we can express 
thespinorfieldVx$asVx@=w(X)++y(X).@f or a 1 -form w and a (1, 1)-tensor field 
y. Now one easily verifies the formulas for w(X) and y(X). 0 

Lemma 3.3. Let + be a nowhere vanishing spinor$eld on (M3, g) and assume that it is 
a solution of the Dirac equation D$ = h@ for some function h : M3 + R. Then there 
exists a l-form a! and a symmetric (1, 1)-tensorfield fi such that 

vxlj? = 3cI(X)l/? + B(X) * If+ + x ’ a * It? = 2a(X)+ + B(X). I@ - (*@>(x)~ VQ 

holds for all vectorjelds X, where * denotes the star operator Moreovel: (II and fi are 
uniquely determined by the spinor$eld $ via the relations 

dWl*> a=qp- T+ and /?=-211LIz. 

Proof. On account of Lemma 3.2, we have Vx $ = w (X)$ + y(X) . I) with w = 

d(llcr12>/W12 and v(X) = C~=I(V~@t 4, . $>bW~12h We seta := &J = dW12)/ 
41@ I2 and let #? and t be the symmetric and the skew-symmetric part of y, respectively. 
Then we obtain 
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Because of De = h$, this implies 

h = -Tr(p) and ai + r; = CQ - ri = o3 + ri = 0. 

We identify t with a two-form and can thus rewrite the latter equation in the form *a! = -r . 
In the three-dimensional Clifford algebra this equation yields the relation 

t(X) = a(X) + x . cl, 

and therefore, we obtain 

VX+=~~(X)~~+~(X)~@+~(X)~~=~~(X)~@+~(X)~I,++X~~~~. 

The formulas (II = d(l@12>/41$12 and ,6 = --Tti/21$12 are consequences of Lemma 
3.1. 0 

Theorem 3.2. Suppose that the scalar curvature S of (IM3, g) does not vanish at any 
point. Then (M3, g) admits a WK-spinor of WK-number h with AS < 0 (resp. AS > 0) 
if and only if (M3, g) admits a positive (resp. negative) Einstein spinor with the same 
eigenvalue h. 

Proof. Let I,? be a positive (resp. negative) Einstein spinor of eigenvalue A. We first note 
that since S = ~hl@l~, the Einstein spinor @ has no zeros. By Lemma 3.3 there exists a 
l-form o and a symmetric (1, 1)-tensor field B such that 

vx+ = 3o(X)@ + B(X) . I) + x . a . I). 

By Corollary 3.1 we conclude that 

dS 

ff=4s 
and #I = $Ric - h Id, 

i.e., + is a WK-spinor of WK-number h with AS < 0 (resp. AS > 0). 0 

4. Integrability conditions for WK-spinors 

In order to study the geometric conditions for the Riemannian manifold (M” , g) in case 
it admits a WK-spinor or Einstein spinor, we first establish some formulas that describe the 
action of the curvature tensor on the WK-spinor. 

Lemma 4.1. Let + be a non-trivial spinor$eld on (Mn, g) such that 
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holds for a l-form CY and a symmetric (1, I)-tensorfield j3 andfor all vector$elds Z. Then 
the following relations holdfor all vector$elds X, Y: 

(9 R(X, Y)(llr) = Y . Vxff . q - x. Vrff * @ + (VxB>(Y> . $ - PYB)(X). $ 

+ WW)~ B(X) - B(X) . W>). $ + M2U. x - x. y>. llr 

+ 2g(Y, Cx)X . (II . $ - 2g(X, a)Y . a . $ + 2g(/?(Y), a)X . l++ 

- 2g(B(X), a)Y . $9 

(ii) Ric(X) . @ = (4n - 8)[011*X. @ - (4n - 8)cx(X)o e @ + (2n - 4)Vxa. I) 

-2~X.E,,.V~,(1.l/r+4X.B(ar).1L 
u=l 

- (4n - @g@!, KU)@ - W(W~ 14 - 4(8 0 B)(X). @ 

+ 2 2 ~5, e (VE~B)(X> . @ - 2dhGW, 
LL=l 

(iii) h* = $S + (n - 1)(&x) - (n - l)(n - 2)ja]* + I/?[*, 

where h := -Tr(B) and 6o := - ci=t %;u. 

Proof. The first and second statement follow immediately from the formulas for the cur- 
vature tensors in Section 1. We will prove the last statement (iii). Let us substitute the 
relation Vz@ = ncr(Z)@ + B(Z). @ + Z. a! . $ into the formula for the Laplace operator 

A$ = - I:=, VE, VE, $ + ~~=I VvE,, E, Ilr. Then we have 

A$ = n(&x)$ - (n - l)(n - ~)/cI[*I/J - 2(n - l)/?(a) e II/ 

and therefore 

(A@, 1cI) = ((n - l)(Ja) - (n - l)(n - 2)Ial* + lP12H11r~ I@>. 

The relation D*$ = dh . $ + h*$ and the Schrodinger-Lichnerowicz formula yield now 
the last statement (iii). 0 

Remark 4.1. One easily verifies that the third statement (iii) in Lemma 4.1 cannot be 
obtained by contracting the second relation (ii). 

Theorem 4.1. Suppose that the scalar curvature S of (Mn, g) does not vanish anywhere. 
Let us assume that ( Mn , g) carries a WK-spinor @ of WK-number h. Then we have the 
identities 

0) 4(n - l)*k*((n - 3)S*X. I+? - 2(n - 4)SRic(X) . $ - 4(Ric o Ric)(X) . $} 
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Corollary 4.1. Let (Mp, gM) and (N‘J, gN) be Riemannian spin manifolds. The product 
manifold (MP x Nq , gM x gN) does not admit WK-spinors in any of the following cases: 

(0 

(ii) 

(iii) 

(iv) 

(MP, gM) ana’ (Nq, gN) are both Einstein and the scalar curvatures SM, SN areposi- 
tive (p, q 2 3). 
(MP, gM) is Einstein with SM > 0 and (N*, gN) is the two-dimensional sphere of 
constant curvature (p > 3). 
(M*, gM) and (N*, gN) are spheres of constant curvature. 
(MJ’, gM) is Einstein and (Nq, gN) is a q-dimensionaljat torus (q 2 1, p 2 3). 
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(i) 4SRic* + (n(n - 3)S* - 41Ricl*)Ric - (n - 3)S3 Id = 0, 
(ii) 4/Ric14 - 4S{Tr(Ric3)) - n(n - 3)S*lRicl* + (n - 3)S4 = 0. 
In particular the Ricci tensor is non-degenerate at any point for n > 4. 

143 

Proof. We consider the case that (M”, g) is conformally flat. The case of VRic = 0 is 
similar. Let y? be a WK-spinor on (Mn , g) of WK-number h # 0. By Lemma 4.2 we know 
that 

=-- 2 Ruu;u1Cr + 1 (&w;& . Ew. llr + L;w& . E,. +) 

If=1 “IW 

= -;S,u$ + c L;,W, . & + E, .E,).+=O 
“<W 

for all 1 I u i n. From (i), (ii) and (iii) of Theorem 4.1 we obtain 

(I) 4h*{(n - 3)S* Id - 2(n - 4)SRic - 4Ric o Ric} - (n - 2)*S* Ric = 0, 

(II) 
1 (n - 2)*S3 

h2 = 4 (n* - 5n + 8)S2 - 4lRicl* ’ 

(III) A* = A (n - 2)*S21Ric12 

4 (n - 3)S3 - 2(n - 4)SJRicl* - 4Tr(Ric3)’ 

respectively. By inserting (II) into (I) we obtain the first equation (i) of the theorem. In 
particular, if n 1 4, the Ricci tensor is non-degenerate at any point. Equations (II) and (III) 
yield the second equation (ii) of the theorem. 0 

As an immediate consequence of the preceding theorem, we shall list some sufficient 
conditions for a product manifold not to admit WK-spinors. Later on, we shall be able to 
make more refined non-existence statements for WK-spinors on product manifolds. 
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Proof. For all the cases (i)-(iv) the Ricci tensor of the product manifold (MP x NS, go x 
gN) is parallel. Moreover, one easily checks that each of these cases does not satisfy the 
second equation (ii) in Theorem 4.3. 0 

We next investigate the case that (Mn , g) is conformally flat and Ricci-parallel. 

Lemma 4.3 (see [21]). Let (M”, g) be conformally~at with constant scalar curvature S 
(n 2 4). Then we have 

lVRicl* = -A(JRicl*) - nTr(Ric3) + 
(2n - l)SIRicl* S3 

n-2 (n - l)(n - 2) - (n - l)(n - 2)’ 

Lemma 4.4. Let (M”, g) be a Riemannian manifold with constant scalar curvature S and 
suppose that it admits a WK-spinor Then, in case 
(i) S > 0 ispositive, the inequality S*/n 5 IRic12 < $(n* - 5n + 8)S2 holds. 

(ii) S < 0 is negative, the inequality lRic12 > i(n* - 5n + 8)S2 holds. 

Proof. We observe that g(Ric - (S/n)g, Ric - (S/n)g) = jRicl* - (S2/n) > 0 holds. If 
( Mn , g) admits a WK-spinor + of WK-number h, then we obtain from Theorem 4.1 (ii) 
the equation h* = i((n - 2)2S3/(n2 - 5n + 8)S2 - 41Ric12). 0 

Theorem 4.4. Let (Mn, g) be conformally jlat, Ricci parallel and with non-zero scalar 
curvature (n 2 4). If Mn admits a WK-spinol; then 
(i) (Mn, g) is Einstein ifs > 0, 

(ii) the equation lRic12 = ((n3 - 4n2 + 3n + 4)/4(n - l))S* holds ifs < 0. 

Proof. By Theorem 4.1 (ii) lRic12 is constant and so it follows from Lemma 4.3 that 

Tr(Ric3) = 
(2n - l)SlRic12 S3 

--’ n(n - 1) n(n - 1) 

Inserting the latter equation into Theorem 4.3(ii) we obtain 

(nlRic12 - S2)(4(n - l)lRicl* - {n(n - l)(n - 3) +4}S*) = 0. 

In case of (Ricl * = S2/n, the sp ace (M”, g) is Einstein, so every WK-spinor is a real 
Killing spinor and hence S > 0. In case of lRic12 = ((n3 - 4n2 + 3n + 4)/4(n - l))S2 > 
((n2 - 5n + 8)/4)S2(n > 4), we see from Lemma 4.4 that S < 0. Cl 

We are now able to construct classes of manifolds that do not admit WK-spinors. First we 
examine manifolds (Mn, g) admitting a parallel l-form n. Let c be the dual vector field of 
r] with 16 I = 1. The Ricci curvature in the direction of c is zero, Ric(c) = 0. We summarize 
the relation between the parallel vector field and the Dirac operator in the next lemma. 

Lemma 4.5. For any spinorjeld $ on (Mn, g) we have 

D(Vc$) = Vc(DlcI)> D(~.$)+C.D$+2V<+=Oo, D=(&I,@=~.D=@. 
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Theorem 4.5. A manifold (I@, g) of constant scalar curvature S # 0 and with a parallel 
l-form does not admit WK-spinors (n z 3). 

Proof. Since Ric(c) = 0, we have 06 @ = -(k/(n - 2))c .$r. By applying the first relation 
from Lemma 4.5 we obtain D(Vc+) = V,(D$) = hVc$ = -(h*/(n - 2))e . +. On the 
other hand, using the second relation from Lemma 4.5 we calculate 

D(Vt1cr) = --&DO. Ilr> = 
2h 

---V~@ + n-2 

2h2 h* 
= 1 -~ - (n - 2)* + n -2 1 t 

(n - 4)1* 
. Ilr = (n-2)* 6.q. 

Thus, n = 3. In the three-dimensional case we can diagonalize the Ricci tensor at a fixed 
point 

Ric = 

Since 4 = Es is parallel, we have 

Rlt = R1212 + R1313 = R1212 + R2323 = R22, 

and, therefore, A = B. On the other hand, using Theorem 4.1 (ii) we obtain 

0 = 8h*(A - II)* = (A + B)3 = S3, 

hence, a contradiction. 0 

We now return to the product situation already described in Corollary 4.1. It is of interest 
that special types of product manifolds admit Einstein spinors, but no WK-spinors (see 
Section 7). 

Theorem 4.6. Suppose that the scalar curvature SM of (MP, go) as well as the scalar 
curvature SN of (NY, gN) are constant and non-zero (p, q p 3). Furthermore, suppose the 
scalar curvature S = Sri/// + SN of the product (Mp x Nq , gM x gN) is not zero. If neither 
(Mp, g&t) nor (Nq, gN) is Einstein, then theproduct manifold (MP x N‘J, g,+_i x gN) does 
not admit WK-spinors. 

Proof. Let II/ be a WK-spinor of WK-number h. Then Vx1+5 = p(X) . + with B := 
(2h/(n - 2)S)Ric - (k/(n - 2))Id and h # 0. Since the scalar curvature S is constant, we 
obtain 

(VxB)(Y) = (n _ 2)s 2h (VxRic)(Y). 

Consequently, if X is tangent to the manifold MP and Y is tangent to Nq, we have 

(VxB)(Y) = 0 = (V,B)(X). 
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Since neither MP nor NY is Einstein, there exist vectors X, and Y, such that ,L!l(X,) # 0 # 
B( Y,). On the other hand, by Lemma 4. I we have 

0 = R(X09 YfJ)(llr) 

= (VxOB)(YO)f 9 - (VY"B>(XO) . Jh + BVO). BW”) . e - B(&J> . BWO) .1cr 

= BVO) ’ B(&> . e - B(&) ’ BVo> * 1cr = V(YO)~ B(XcJ> . $3 

and we conclude $ = 0, a contradiction. 0 

In a similar manner we can prove the following facts: 

Theorem 4.7. Suppose the scalar curvature SM of (Mp, gM) (p 1 3) is constant and 
non-zero. If the scalar curvature SN of (Nq, gN)(q 2 1) equals identically zero, then the 
product manifold (MP x Nq, gM x gN) does not admit WK-spinors. 

Theorem 4.8. Suppose that (Mp, gM) as well as (Nq, gN) are Einstein and that SM # 0, 
SN # 0, S = SM + SN # 0 ( p, q 2 3). If the product manifold MP x Nq admits 
WK-spinors, then either (p - 2)s~ + PSN = 0 or qS,vt + (q - 2)s~ = 0 holds. 

Theorem 4.9. Let (MP, gM) be an Einstein space with scalar curvature SM # 0 and 
(Nq, gN) be non-Einstein with constant scalar curvature SN # 0 (p, q 4 3). Suppose that 
SM f SN # 0 and MP x Nq admits a WK-spinor Then we have (p - 2)s~ + ~SN = 0. 

5. An eigenvalue estimate for Einstein spinors 

In this section we prove an estimate for the eigenvalue h corresponding to an Einstein 
spinor. The following lemma is motivated by Lemma 3.1. 

Lemma 5.1. Let I++ be a nowhere vanishing eigenspinor of the Dirac operator D with 
eigenvalue h E R. Then the following inequality holds at any point x E Mn: 

h2 z 2 I lW2 I “:I’,“‘:’ I +WvW2~12 
4 41V914 4(n - 1)1$14’ 

where T$(X, Y) = (X 9 Vy@ + Y . Vxyk, @). Equality holds zfand only if there exists a 
non-trivial eigenspinor $1 of D as well as a l-form crl and a symmetric (1, 1)-tensor$eld 
j31 such that 

Vx@l = w G> . lcr~ + B1 W> .@I + X . UI . llrl 

for all vectorjelds X. 

Proof. For a fixed nowhere vanishing eigenspinor $ we define a new covariant derivative 
0 for any spinor field (p by the formula 
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where 

d(llr, II/) c! ‘C -9!-- 
2(fi - l)(@, If+) 

and j3 := -2(11r, llr). 

Then we have at any point of Mn: 

(W P) = (VP+, V@) + n(n - 1)l~12(ti> $) + IB12(11r9 Ilr) 

-2n~ol,(VE,~,~)+2~(B(E,).VE,1/1,I/r). 
LJ=l LJ==l 

On the other hand, one easily checks the following relations: 

Therefore, we obtain 

The limiting case follows immediately from Lemma 3.1. 0 

Theorem 5.1. Let (M”, g) be a Riemannian spin manifold with non-vanishing scalar cur- 
vature S. If (M”, g) admits a positive (resp. negative) Einstein spinor for an eigenvalue 
0 # h E R, then the following inequality holds at any point: 

h2((n2- 5n + 8)S2- 4)Ric12} 2 e((n - 1)S3+ nl dS12+ 2(n - l)s(~s)}. 

Proof. By contracting the relation Ric - i Sg = ki T$ we obtain A($, +) = F(n - 2)s. 
SubstitutingIT$j2 = 161Ric12+4(n-4)S2and(II/, I++) = F((n - 2)/h)Sintotheinequality 
of Lemma 5.1 yields the desired result. 0 

By integrating both sides of the inequality in Theorem 5.1, we obtain the following 
generalization of Theorem 4.2. 

Corollary 5.1. Let (Mn, g) be a compact Riemannian spin manifold with positive scalar 
curvature. Zf (Ric12 2 $(n” - 5n + 8)S2 at any point, then (M”, g) does not admit Einstein 
spinors. 

Remark 5.1. Consider a two or three-dimensional Riemannian spin manifold and let 
@ be any nowhere vanishing eigenspinor of the Dirac operator. Then we have VX+ = 
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na(X)@ + /I(X) . @ + X ’ o . @for a l-form a and a symmetric (1, I)-tensor$eld #I (see 
Lemma 3.3). Thus one is in the limiting case of the inequality in Lemma 5.1 for all such 
spinor$elds @ on (M”, g) ifn = 2,3. 

Remark 5.2. As one sees from the second equation (ii) in Theorem 4.1, any WK-spinor 
realizes the limiting case of the inequality in Theorem 5.1. Moreoven in case (M”, g) is 
Einstein, this inequality reduces to h2 2 (n/4(n - 1))s and coincides with Friedrich’s 
inequality (see [ 141). 

6. Solutions of the WK-equation over Sasakian manifolds 

In this section we study the geometry of the spinor bundle over Sasakian manifolds. To 
prove the existence of WK-spinors (which are not Killing spinors) we will decompose their 
spinor bundles and apply the techniques introduced by Friedrich and Kath (see [ 16-181). In 
recent papers by Boyer and Galicki ([6,7]) one finds an excellent exposition of Sasakian- 
Einstein geometry and the meaning of Killing spinors therein. Let M2mi-’ be a manifold of 
odd dimension 2m + 1, m 2 1. We recall that an almost contact metric structure (4,(, n, g) 
of M2m+’ consists of a (1, 1)-tensor field 4, a vector field 6, a l-form n, and a metric g with 
the following properties: 

r(6) = 1, 4J2(X) = -X + r(X),!?, &4X9 4Y) = g(X, Y) - n(X)r(Y). 

In our considerations, the fundamental 2-form @ of the contact structure defined by 

@(X, Y) = g(X, 4(Y)) 

will play an important role. There are several equivalent definitions for a Sasakian structure 
(see [6,7,33]). In this paper we will use the following one: 

Definition 6.1 (see [33]). An almost contact metric structure (4, c, n, g) on M2mf’ is a 
Sasakian structure if 

(Vx$)(Y) = g(X, Y)C - rl(Y)X 

holds for all vector fields X, Y. 

In some calculation we will use an adapted local orthonormal frame 

Then the Christoffel symbols have the following properties: 

El, ET := +(EI), E2, ET := 4(E2), . . . , En,, Ei+i = r&(G), C. 

rUJ+;j =o, PT + rU$ = 0, r;2,+1 = -rj12,+, = s;, 
r;2m+, = r$+l = ri i 

2m+12m+l = Gm+12m+l = 0, 
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for all 1 5 i, j, k 5 m and 1 5 u 5 2m + 1. The Riemann curvature tensor and the Ricci 
tensor have some special symmetries that we will use in our proofs: 

Ric(X, Y> = i ‘2’ gG#dR(X, 4WL1, Ed + (2m - l)g(X, Y> + v(Xh(Y), 
u=l 

g(R(@X, 4Y>($Z>, @WI = g(R(X, Y)Z, w> + u(mw)gw, Z) 
- r(y)v(z)g(x~ w - ~(mw)g(y, Z) 
+ ~(ol(z)g(y~ w. 

We reformulate the latter identities using the components of the Ricci and the curvature 
tensor. 

Lemma 6.1. On any Sasakian manifold (M2”‘+‘, 4, c, n, g), we have 
m 

(9 Rjt = Ry = F Riiji + (2m - l)Sjl, Rji = -R?, = - 
c RiTjl) 

i=l i=l 

R2m+12m+1 = 2m, Rj 2m+l = R72,+1 =0 (1 5 j,l Fm). 

(ii) Rm = RijkI, Rijkl = R= IJki’ RiTk, = Rijzt, 

Rijkl = -R: rjki’ Rijki = -Riikl, 

Ri2m+lk2m+l = R;2m+lk2m+l =8ik (1 Ii, j,k,l im). 

In all the other cases, R,,,, = 0 as soon as one of its indices equals 2m + 1. 

Assume that the almost contact metric manifold (M2m+1, c$, 6, n, g) has a spin structure. 
Then one verifies, just as in the case of almost Hermitian spin manifolds (see [ 15]), that the 
spinor bundle of (M2m+’ , q5, c, q, g) splits under the action of the fundamental 2-form @. 

Lemma 6.2. Let (M2mf1 ,$, 6, n, g) be an almost contact metric manifold with spin struc- 
ture andfundamental 2-form @. Then the spinor bundle .E splits into the orthogonal direct 
sum C = EO @ El @. . . @ E,,, with 
(i) CD ]c, = 2/--i(2r - m)Id, dim(Z) = (7) (0 I r I m), 

(ii) ~I.z,cBc,~c,~... = (a)2m+1 Id, ~Ic,Bz~~z~~... = -(a)2m+1Zd. 
Moreover the bundles .Eo and &,, can be defined by 

Eo = {I& E .E : $(X> . $ + l/-lx. $ + (-l)m n(X)$ = OforallvectorsX}, 

&={$ E Z: 4(X).$ -&7X.* -n(X)@ =OforallvectorsX}. 

In particular we have the formulas 

C. $0 = (-1)“2/-1+0, @. tie = -ml/-l$0, $0 E Eo, 

~~lcrM=l/--i&n, @*& =mG$,, llr, EC,. 
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Lemma 6.3. Let (M*“+’ ,d~, t;, n, g) be a Sasakian spin manifold with fundamental 2-far-m 
@. For all vector$elds X, Y, Z and spinor$elds $ we have 

(i) X. @ . @ - @ . X. $ = 2@(X). $, 

(ii) (Vx@P)(Y, Z) = W)g(X, Z> - v(Z)g(X, Y>, 
(iii) (Vx@) . IJ? = -X .t . I/I - n(X)+. 

Proof. Since X . @ = X A @ - ix(O) and @ e X = @ A X + ix(@), we have 

X. @ - @ . X = -2ix(@) = -2(-+X) = 2@(X). 

The second formula (ii) is easy to verify. Using (ii) we prove the last identity 

(Vx@) . lb = - 2 k(X, Ek)~k * t + gG, cpx. 6). @ 
k=l 

= -(X . [ - g(X, .$)C .[}. l/I = -x .e . $h - ~(X>lj. ??

For Sasakian spin manifolds, another new spinor field equation closely related to WK- 
spinors deserves special attention. 

Definition 6.2. Let (M2m+* ,q5, e, n, g) be a Sasakian spin manifold. A non-trivial spinor 
field IJ? is a Sasakian quasi-Killing spinor of type (a, b) if it is a solution of the differential 
equation 

VX$ = ax. $ + bv(XX. 1c/, 

where a and b are real numbers. 

Any Sasakian quasi-Killing spinor of type (a, b) is an eigenspinor of the Dirac operator 
of eigenvalue h = -(2m + 1)a - b. First we compute some relations between the Killing 
pair (a, b) of a Sasakian quasi-Killing spinor and the geometry of the Sasakian manifold. 

Lemma 6.4. Let us assume that (M*“+’ ,4, $, n , g) admits a Sasakian quasi-Killing spinor 
1c/ of type (a, b). Then we have 
(i) Ric(X) . I) = @ma2 -t 4ab)X. I+!J + 2b@(X) . ( . + + (2m - Sma* - 4ab)g(X)t . I), 

(ii) 2b@ . I/J = m(1 - 4a2 - 4ab)t . I). 
In particular the scalar curvature S and JRicl* are constant and given by 

S = 8m(2m + l)a2 + 16mab, 

IRicl* = (8ma* + 4ab)(16m2a2 + 16ma* + 24mab - 4m) + 8mb* + 4m2. 

Proof. Using the (iRicci)-formula, an adapted frame and the properties of the Christoffel 
symbols of a Sasakian manifold mentioned before we obtain after direct calculations: 

Ric(El) . $ = (8ma* + 4ab)Et . + + 2bET. 6 . $, 

Ric(E7) . $r = (8ma* + 4ab)Ei. $I - 2bEt . < .11/, 

Ric(<) . I) = 4bQj . pb + 8ma(a + b)t . pk. 
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we obtain 

((2~ - 1)s - 4h(2m + 4b) + 2hS)X. @ + 2{(2m - 1)bS + ghb)q(X)c . @ = 0, 

which implies (2m - 1)s - 4h(2m + 4b) + 2hS = (2m - l)bS + 8hb = 0. Inserting 
S=2m(2m+4b)+2mandh=-~(2m+1)-bweconcludethatb=-(2m2-m-2)/ 
4(m - 1). 0 

For the proof of the second step of our main theorem we need a special algebraic property 
concerning the decomposition of the spinor bundle of a Sasakian manifold. 

Lemma 6.6. Let (El,. . . , EE, <) be an arbitrary adaptedframe on (M2mf’, @,t, n, g) 
(m > 3). Then we havefor all cp, $ E r(.& $ &,,) 

(E~.E~.~,I~~)=(E~.ET.~,~)=O (llk<llm), 

(Ep.Eq.~,~/)=(E~.Eq.~4,1Cr)=0 (1 ipfqim), 

(E,.~.~,~)=(E,.~.(D,~)=O (1 Irim). 

In case of m = 2, the same relations are true for all ~0, I/J if both belong to one of the bundles 
.GJ or x2. 

One can prove the identities of Lemma 6.6 using an explicit representation of the Clifford 
algebra. 

Theorem 6.3. Let (M2mf’ ,@, 6, q, g) be a simply connected Sasakian spin manifold (m > 
2). Then the following statements hold for all b E R : 

(i) If m = 0 mod 2: there exists a Sasakian quasi-Killing spinor @ E r(.&) of type 
(i, b) ifand only ifRic = (2m + 4b)g - 4bn 8 n. 

(ii) Zf m = 0 mod 2: there exists a Sasakian quasi-Killing spinor $ E r(&) of type 
(-4, b) ifand only ifRic = (2m - 4b)g + 4bn @ n. 

(iii) Zf m = 1 mod 2: there exist Sasakian quasi-Killing spinors $0 E r(J!$) , pk,,, E 
f (_&) of type (-i, b) ifand only ifRic = (2m - 4b)g + 4bn @J n. 

Proof. We prove the first statement (i), the other two statements can be proved similarly. 
With respect to Lemma 6.5 we should prove that the equation Ric = (2m + 4b)g - 4bn 8 n 
implies the existence of a Sasakian quasi-Killing spinor of type (i, b). We define a new 
connection in the spinor bundle Z by 

‘sxq := Vxp - ;X . cp - bq(X)c . ~0. 

Using Lemmas 6.2 and 6.3 we calculate for any section $ of Zo : 

@. (Ox+) = 0 . (Ox+ - ;X . $J - by(X)6 . @) 

= Vx(O. $) - (Vx@). y9 - $D. X $ - bn(X)@ .e. $ 

= -mJ-iVx@ + X + < * + + n(X)+ - $(X. @ . $ - 24(X) * 1cr) 
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-b?j(X)@ . (2/-l+) 
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= -mJ-IV& +43x. y? + q(x)+ + g-x. $ 

-Ax. llr - v(X)@ - mby(X)llr 

= -rn&i(Vx$ - ;X 1 I+% - bv(X)[. +) = -mGi(Vx@). 

This implies that v is indeed a connection in Zu. Now we prove that the curvature 
-- -- 

RX, Y)(q) := VXVYV - VYVXGD - yx,r,v 

of the new connection 7 vanishes in Co, i.e., the bundle (Co, 7) is flat. For all sections q 
of Z, direct calculation yields 

R(X, Y)(q) = R(X, Y)((p) + $(X . Y - Y . X) . cp - 2bg(X, @Y)C . p 

-bq(X)Y . e . p + bq(Y)X . e . qJ 

+h(YM(X). FJ - b(X)@(Y). co. 

Let pu : Z + CO be the natural projection and I/J an arbitrary section of Zu. Then, using 
Lemmas 6.1,6.2 and 6.6 we have for all 1 5 k, 1 5 m: 

as well as 

= prJ{ piRkpk) = 0 

= --$~po{(& - (2m - 1)&l - 8~ - 4b&r)@} 

= -iApo{((2m + 4b)&[ - 2m& - 4b&l)+} = 0, 

Po@(Ek, t)(q)] = POW,. $1 = 0. 

Similarly, one verifies that 

PO@(&, E#4)] = po{~(E~> El)($)] = po]~(Q> t)(Q)] = 0. 

Consequently, there exists a non-trivial section I/Q of CO with O&J E 0. 0 

In case of b = 0, Theorem 6.3 coincides with the result proved by Friedrich and Kath 
(see [16-181). 

Corollary 6.1. Let (M2”+’ , q5,6, r], g) be a simply connected Sasakian-Einstein spin man- 
ifold (m > 2). Then 
(i) if m = 0 mod 2, there exists a Killing spinor $0 E r(Q) with Killing number i and 

a Killing spinor $,,, E r(&,) with Killing number -i, 
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(ii) if m = 1 mod 2, there exist at least two Killing spinors ~0 E I, pm E r(.Z,) 
with Killing number - i. 

Remark 6.2. Let a = hi, b # 0 in Theorem 6.3. Then the number of independent 
Sasakian quasi-Killing spinors of this type is, by Lemma 6.5, precisely two ($1 E T(&) 

and 1192 E r(&)J. 

Following the arguments used by Friedrich and Kath we will construct Sasakian spin mani- 
folds(Mzm+‘, q5,6, n, g) withRiccitensorRic = ((-m + 2)/(m - l)>g+((2m2 -m - 2)/ 

(m - 1))v f8 9. 

Example 6.1. Let (N2”, J, g) be a simply connected Kahler-Einstein manifold with scalar 
curvature S # 0. Then there exists a U(l)- or [WI-principal fibre bundle p : Q2m+’ + 
N2m over (N 2m, J, g) with the following properties: 

(9 Q2mf1 has a Sasakian StrUCtUre (4, t, r), gQ>. 

(ii) The Ricci tensor of ( Q2m+‘, 4, c, 17, gQ> is given by 

(iii) Q2m+’ is simply connected and has a spin structure. 

Proof. Consider the fundamental form fl of the Klhler-Einstein manifold (N2m, J, g) as 
well as the 2-form 

[ 1 --&Q = c, (N2”) 

representing the first Chern class ct (N2”) of N 2m. Let k be the maximal integer such that 
(l/k)ct (N2”) is an integral cohomology class. Then there exists a U(l)- or IW’-principal 
fibre bundle p : Q2m+t + N2”’ and a connection A such that Q2m+’ is simply connected 
(see [18]) and 

c,(Q~~+' + N2m) = &dA] = &(NZm) 

and F = dA = (S/2km)p*(f2). Let us define a l-form q, a vector field < and a metric gQ 

on Q 2mf1 by 

q:=FA, c:=-&; gQ:=p*g+f@q, 

where V denotes the vertical fundamental vector field of the U(l)- or R’ -action on Q2m+’ 
corresponding to the element &i E &i[w’ of the Lie algebra of U (1) or iw t . We define 
the map 4 : T Q2m+* --f T Q2mf’ by 

+(XH) := (J(X)lH and d(c) := 0, 



E.C. Kim, T. Friedrich/Joumal of Geometry and Physics 33 (2000) 128-172 155 

where X” denotes the horizontal lift of a vector field X on N2”‘. Let (Et, ET, . . . , E, , EK) 
be a local orthonormal frame on (N 2m, J, g) with J (El) = ET, J (ET) = -El and consider 

its horizontal lift (EfI, Ey , . . . , EE, E$ 6). Then we have 

W,H, E:l = L&t, &I” - Fu,V=[Eu, Eul”-L$? = [Eu, &I” - 2%,6, 

[E,H, Cl = -&WE, VI = 0. 

Using the notations 

we then obtain 

(CQ),“, = (CN);“> (cQ>;rI'+' = -252~1 

(CQ);2m+, = (cQ)$m+:, = <cQ>;m+l2m+, = (cQ);::: 2m+, = O. 

We rewrite these relations in terms of the Christoffel symbols as follows: 

<rQ>,“, = (&);“I (rQ>;m+, U = (rQ>;;+’ = (rQ&m+, = --f&v, 

all the other Christoffel symbols vanish. Consequently, (4, 6, n, gQ) iS a SaSakian StruCture 

on Q2m+1. Furthermore, a direct calculation using the Christoffel symbols above proves 
the result 

2m 

where1 5 j,Zim. 0 

Remark 6.3. Let (N2m, J, g) be a compact Kiihler-Einstein manifold with positive scalar 
curvature S (m > 2). Resealing the metric g we may assume that S = 2m2/(m - 1). 
Then, by the above example, there exists a Sasakian spin manifold ( Q2m+‘, 4, c, 17, g Q) 

with the Ricci tensor ficQ = ((-m + 2)/(m - l))gQ •t ((2m2 - m - 2)/(m - 1))~ @ ?J, 
i.e., (Q2m+1, 4, .$, q, gQ) admits WK-spinors not being Killing spinors. 
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Finally, we investigate the behaviour of Killing spinors on Sasakian-Einstein manifolds 
under a deformation of the Sasakian structure. In particular, we show that WK-spinors can 
be obtained in this way. There exists a non-trivial deformation of the Sasakian structure. 

Lemma 6.7 (see [30]). Let (4,6, q, g) be a Sasakian structure of M2m+’ and consider 

$ := f#r, F := a*& Fi := a-*n, g” := a-*g + (av4 -a-*)9 @ n, 

where a is a positive real number Then (5, F, ;i, 3 is again a Sasakian structure of M*‘?‘+‘. 

If (Et, ET, . . . ) E,, E,, 4) is an adapted frame on (M*“+‘, @,c, n, g), then ,?, := 

aEk, ET = a ET, F = a*,$ is an adapted frame on (M z+l 3 & K ;i, 3. 

Lemma 6.8. The Christoffel symbols and the Ricci tensor of (Mz+‘, &, F, q, 3 and 
(M2m”, @,c, n, g) are related by 
(i) Ffi = ar& Fur+’ = rur+‘, F$+1o = a2r~+,v +(a* - l)r,2,m+‘, ?J+12m+l = 

0 (1 5 u, u, w < 2m). 
(ii) Ejl = a*Rjt +;(a* - l)Sjl, ijj = a2Rj 7 (1 5 j, 1 5 m), ? = a*S + 2m(a* - 1). 

In particular if (M2mf1 ,@, 6, q, g) is Einstein, then the Ricci tensor %z is given by 

%z= {(2m+2)a2-2)z+(2m+2)(1 -a*)jj@F. 

Proof. We write [Ep, E,] = CzrF’ Ch4E, and [E,, ,!$I = x5:;” eP,ir for all 1 5 
p, q , r ( 2m + 1. One easily verifies that 

r?,“, = aC,W,, FiT+’ = C,2:+‘, Fi;m+l = a*Cz&+), 
~2m+l =aC2m+l 
u2m+l u*m+1 =0 (1 su,v,w i2m), 

and the lemma follows from these relations. 0 

Any spinor field $ on M2mf’ can be identified with a corresponding spinor field $ on 
Mz+‘, and the covariant derivatives V and ? as well as the Dirac operator D and 6 are 
related by the following relation. 

Lemma 6.9. 

(i) 

(ii) 

Proof. Using the previous formulas we can compute the covariant derivative ? in the spinor 

bundle of Mz+ ] : 
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Let us denote by K, (M2m”, g) the space of all Killing spinors on (M2mf’, g) with Killing 
number r. Lemma 6.9 together with Lemma 6.2 yield the following theorem. 

Theorem 6.4. 

(9 

(ii) 

(iii) 

If m 3 0 mod 2 and $0 E K,,2(M2”‘+’ , g) n r(&) is a Killing spinor in Eo, then 

a2 
vx$o+.$o+(m+l) -a-mn(x)~.~o. 

2a2 

In particular & is a Sasakian quasi-Killing spinor on (MG+l, 6, r, ;i, 3 of type 

(4, i(rn + l)(a2 - 1)). 
Ifm z 0 mod 2 and I++~ E K_1,2(M2”+’ , g) fl r(.Z,) is a Killing spinor in Z,, 
then 

e,~m=_Lpm_ (m+l) a2 -a-mr(x)~.~m. 
2a2 

In particular Tm is a Sasakian quasi-Killing spinor on (Mz+‘, ?, F, ;i, g^, of type 
(-$, -$(m + l)(a2 - 1)). 
rfm 3 1 mod 2 and @ E K_I,~(M~~+‘, g) n (r(Z)) U r(&)) is a Killing spinor 
in .X0 or in &, then 

~,~=-~~.~- (m+l) a2 -a-“n(X)&& 
2a2 

In particular 6 is a Sasakian quasi-Killing spinor on (Mz+‘, 7, r, v, 3 of type 
(-i, -i(m + l)(a2 - 1)). 

By Theorem 6.4 together with Theorem 6.2 we obtain the following corollary. 

Corollary 6.2. Let ( M2mf’ , +,c, n, g) be a Sasakian-Einstein spin manifold (m 1 2) 
and let @ E K+1,2(M2”+’ , g) n T(&) or @ E K*I,~(M~~+‘, g) n r(G) be a Killing 

spinor Then q is a WK-spinor on (M- ;;;;+I, 6, f, ;i, 3 that is not a Killing spinor if and 
only if a2 = m/2(m2 - 1). 

Remark 6.4. Theorem 6.3 is more general than Theorem 6.4 in the following sense: rewrit- 
ing b = &(m + l)(a2 - 1)/2 we have a2 = f(2b/(m + 1)) + 1 > 0. Therefore, by a 
deformation of Killing spinors one cannot prove the existence of Sasakian quasi-Killing 
spinors of type ($, b), b 5 -$(m + l), m = 0 mod 2 or of type (-$, b), b p i(m + 1). 

7. Solutions of the Einstein-Dirac equation that are not WK-spinors 

In this section we show that special types of product manifolds admit Einstein spinors that 
are not WK-spinors. For that purpose we need some explicit algebraic formulas describing 
the action of the Clifford algebra on tensor products of spinor fields. Let (M2J’, gm) and 
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(N’, gN) be Riemannian spin manifolds of dimension 2p 1 2 and r 1 2, respectively. 
Then the product manifold (M*p x N' , gM x gly) admits a naturally induced spin structure 
and the spinor bundle is the tensor product of the spinor bundles of M*P and N’. Let 
us denote by (El, . . . , _I$,) and (Fr , . . . , F,.) a local orthonormal frame on (M*J’ , gM) 
and (N’, gN>, respectively. Identifying (El, . . . , Ezp) and (Fr , . . . , Fr) with their lifts to 
(M*p x N’, gM x gly) we can regard (Et, . . . , EQ,, FI, . . , , F,.) as a local orthonormal 
frame on (M*p x N’, gM x gN). Furthermore, we observe that if @M and @N are spinor 
fields on (M2J’, gM) and (N’, gN), respectively, then the tensor product @M 63 @N is well 
defined on (M*p x N’, gM x g,AJ). Using the representation of the Clifford algebra (see 
Section 1) we can describe the Clifford multiplication on the product manifold. 

Lemma 7.1 (see [S]). For all 1 5 j 5 2p and 1 5 1 5 r we have 

wherepM = E’r\,.,r\E2P is the volume form of (M*p, gM). Inparticulai; we have 

Ei . Ej . (‘+J’M @ $N) = (Ei . Ej ’ $M) C3 @N, 

Fk. fi. ($M ‘8 $N) = +M %‘(Fk 9 4 * @‘N), 

Ej * fi . (@M ‘8 $N) = - fi . Ej . ($M @ $N) 

= (zr-I)P{(Ej * PM. @M) @ (Fl . $N)} 

We denote by VM (resp. VN) the Levi-Civita connection and by D,c~ (resp. DN) the 
Dirac operator of (M*p, gM) (resp. (N’, giy)). From Lemma 7.1 we immediately obtain 
the following formulas for the covariant derivative V and the Dirac operator D of (M*P x 

N’, gM X&YN). 

Lemma 7.2. 

vZ(+M ‘8 +N) = @&)@M) %'$N + $M 8 (v$q +N), 

D(+M 8 +N> = (DM+M) @ +N + (A)'(PM. @MI @ (DN+N), 

D*(~~~M~~N)=I(DM)*~M}~~N+~~~M~{((DN)*~N}, 

where ?TM : T(M x N) + T(M), ?‘rN : T(M x N) -+ T(N) denote the natural 
projections. 

The spinor bundle .X(M*P) of (M*p , gM) decomposes into Z(M*J’) = Z+(M*J’) @ 
z-(M2p) under the action of the volume form PM = E’ A . . . A E*p: 

Z*(M2p) = {$ E Z(M*P) : PM. @ = &(l/-I)p+}. 
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We denote by I/F; E r(X*(M2J’)) the positive and negative part of a spinor field I+? E 
r ( JC(M2P)), respectively. Furthermore, if we write 

(40~~ Ilr~4) = (POM, Ilr.44) + LmkM, $04)2/-I, 

and in a similar way for spinor fields on the manifold N, then the following formulas 

@A4 @~N~$M@'+N) = ((oM,$M)k'Nt'bN) 

and 

hold. 

Lemma 7.3. Let @M and @N be a Killing spinor on (M2p, g,+f) and (N’ ,gN) with DM @M = 
AM+M, AM # 0 E R and DN+N = ANI/I/N, A.N # 0 E R, respectively. Let us assume that 
(+L, +i) = (@i, +i) and (X.+h, $,) = (X.@,, I@;) = Oholdforallvector$elds 
X on M2p. Then 

(i) 60 := {h + hN (-l)p)(+~ @ +N) + k~(+i @ +N) is a non-trivial eigenspinor 
of the Dirac operator D on (M2p x N’, gM x gN) with eigenvalue h, where h := 

*Jm. Znparticulal; we have (q~, cp) = h{h +h.~(-l)~}(@~, @M)(@N, @N). 
(ii) Foralllii#ji2pandlik#l~rwehave 

Proof. We set @ := @$@ +N and h := xkJkL + 1;. Since DM@$ = AM@;, we see 
by Lemma 7.2 that 

Using this fact and Lemma 7.2 one easily verifies that 

q := a+ + W = a(+$ @ $N) + hM(@i @ +A’) + hN(l/--l)P(/&+f. I+$) @ ?+h,,, 

= ih + aN(-l)'}($; ‘8 $N) +&VI <$, @ $N) 

is an eigenspinor of the Dirac operator D. Moreover, we have 

(po,q) =k,(k+ hN(-l)P}(lCrM,~M)(~N,lCrN). 
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With respect to Lemmas 7.1 and 7.2, we obtain for all 1 ( i 5 2P and 1 5 k 5 r: 

=A{h+hN(-l)p)(-l)pFk ’ (@; ‘8 +N) ++(-I)‘& ’ (+, 8 $N). 
r 

Since Ei . Ej + Ej . Ei = Fk * Fl + FL . Fk = 0 for all 1 5 i # j 5 2p and 1 5 k # 1 5 r, 
the second statement (ii) is clear. Furthermore, from these equations it follows that 

h2 h2 
Ei . v,ql-/-Fk. VE~~O= -9-f(-l)‘+$(-1)” (Ei ' $a) 8 (Fk ' @N) 

- (Ei *Ilri)@(Fk.@N), 

and after multiplication by p: 

(Ei 'VF~VDF~.VE;V~VO) 

-h'NC-l)p+$t-l)p (Ei.$',$,@i)(Fk.@Nt@N) 
r 

I 

-AM + + &C--l)"+ $ {~+~N(-~Y')VG .@i, @&)(Fk .@N,@N). 

Using now the assumption (Ei . @I’, +,) = (Ei . $l, $T) = 0 we conclude that (Ei . 
VF~CJJ + Fk . VEIL, ~0) = 0. The last statement (iv) is easy to verify using the following 
equations: 

Grunewald proved in 1990 that the assumption on (M2J’, g&r) in Lemma 7.3 is satisfied in 
case of a six-dimensional simply connected nearly K5hler non-Kalrler manifold. 

Lemma 7.4 (see [ZO]). Let (M6, J, gM) be a six-dimensional simply connected nearly 
Kiihler non-Ktihler manifold. Then (M6, J, gM) is an Einstein spin manifold admitting at 
least two Killing spinors +M, (0~ with real Killing number bM > 0 and -bM, respectively. 
Moreovel; the Killing spinors $M, PM have the following properties: 
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(0 (IlrL, +,$) = (14,~ +,I and (v$, (D$) = ((o$ YJO,). 

161 

(ii) (x. $rL, $ri) = (X .(pL,(oi) =OforallvectorfteldsX. 

Examples of six-dimensional simply connected nearly Kahler non-KZhler manifolds are 
the following homogeneous spaces (see [2]): 

S6 = Gz/SU(3), CR3 = S0(5)/u(2), F(1,2) = u(3)/u(1) x U(1) x U(l), 

SO(5)/U(l) x SO(3), SO(6)/U(3), Spin(4) = S3 x S3, Sp(2)/U(2). 

Now we prove the main result of this section. 

Theorem 7.1. L.et (M6, J, go) be a six-dimensional simply connected nearly Kahler non- 
Kahler mantfold and (N’, gN> a Riemannian spin manifold admitting a Killing spinor +/N 
with DN@N = ~N$N , AN # 0 E [w. Resealing the metrics gM, gN we may assume that 
the scalar curvatures SM, SN satisfy the following relation: 

(*) $ = 
3r2 - 19r + 6 + J(3 r2 - 19r + 6)2 + 180r2(r - 1) 

30r 

Then the product manifold (M6 x N’, gM x gly) admits a positive (resp. negative) Einstein 

spinor with eigenvalue - where h,+t # 0 E [w is the eigen- 

value of a Killing spinor ?,kM on (M6, J, gM). 

Proof. By Lemma 7.3 (i) the spinor field (D := (A. - h-N)(@$ 8 @N) + hM(@i @ @N) 
is a non-trivial eigenspinor of the Dirac operator of ( M6 x N’ , gM x gN) with eigenvalue 

A. = f,/m. We will only treat the case of h = - 
$21 h, + A,, the second case of h = 

J_. h M + A, is similar. Let us denote by RicM and Riciy the Ricci tensor of ( M6, J, gM) and 

(N’, gN), respectively. Then Ric = RiCM +RiC,v is the Ricci tensor of (M6 x N’, gM x giy) 
and we know that the scalar curvature S = SM + SN is positive. Moreover, Lemma 7.3(ii) 
and (iii) directly yields the following facts: 

RicM(Ei,Ej)-~Sg(Ei,Ej)=~T~(Ei,Ej)=O (lsi#ji6), 

RiCN(Fk, Ft) - iSg(Fk, Ft) = $T,(Fk, Ft) = 0 (1 5 k # 1 ( r), 

Ric(Ei, Fk) - iSg(Ei, Fk) = $T,(Ei, Fk) = 0 (1 5 i 5 6, 1 5 k 5 r). 

Therefore, ~0 is a positive Einstein spinor if and only if the following relations hold (see 
Lemma 7.3 (iv)): 

(*I) 

(*2) 

2RicM(&, Ei)-(SM+SN)= %(k - ~N)($M, $M>($N, $N) (1 I i 5 61, 

h2 
zRicN(Fk, Fk)--(SMi-SN)= >(A - ~N)($M, $M)($N, $N) (1 5 k 5 r). r 
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Since RicM(Ei, Ei) = S~,1/6 and Ricn,(Fk, Fk) = SN/r, the relations (*I) and (*2) are 
equivalent to 

(**> G - hN)(@M, ~C~M)(@N, @N) = $ - SM - SN 
> 

By inserting h, - m 2 - 3 SM and h i = rSN/4(r - ) 1 one checks that the second equation 
of (**) is equivalent to the assumption (*) of the theorem. Moreover, one can choose the 
Killing spinors $M , I@A~ in such a way that the first relation of (**) is satisfied. Consequently, 

the spinor field v with h = - a positive Einstein spinor. 0 

Remark 7.1. The product manifold (M6 x N’, gM x gly) of the theorem does not admit 
WK-spinors (see Corollary 4.1 or Theorem 4.8), and therefore, the Einstein spinor (p = 
(h - h,“)($; @I ?+%N) + &,,($ki @ @J,) CUi’WlOt be U WK-spinal: 

Remark 7.2. The Ricci tensor Ric of (M6 x N’, gM x gN) is given by Ric = (SM/6)gM + 
(SN/r)gN. Moreovel; one verifies easily using the relation (*) of the theorem that (M6 x 
N’, gM x gN) is Einstein ifand only ifr = 6 and SM = SN. 

8. The three-dimensional case 

In this section we investigate the Einstein-Dirac equation for three-dimensional mani- 
folds. If the scalar curvature S has no zeros, the Einstein-Dirac equation is equivalent to 
the weak Killing equation (see Theorem 3.2): 

VX+ = & dS(X)@ + $Ric(X) . + - AX . $ - -4$* dS)(X) . pk. 

Let us assume that the scalar curvature of (M3, g) is constant, S = const # 0. Then a 
WK-spinor is a solution of the equation 

Vx$=h iRic(X).@-X++ 
( 1 

and any WK-spinor is an eigenspinor of the Dirac operator. Moreover, A. and the scalar 
curvature are related by the equation (see Theorem 4.1 (ii)) : 

8k2{S2 - 21Ric12} = S3. 

Example 8.1. Consider the three-dimensional nilpotent Lie group Nil together with the 
left-invariant Riemannian metric 
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The Ricci tensor has rank 2 and the eigenvalues coincide: 

Therefore, we have S2 - 21Ric12 = 0 and S # 0, i.e., Nil does not admit any WK-spinor. 

Proposition 8.1. Let ( M3, g) be a Riemannian spin manifold of constant scalar curvature 
S # 0 and suppose that M3 admits a WK-spinor. Then the length lRic12 of the Ricci tensor 
is constant. 

Remark 8.1. Proposition 8. I holds in any dimension, see Theorem 4.1 (ii). 

We recall that a three-dimensional Riemannian manifold is conformally flat if and only 
if the tensor 

K=zg-Ric 

has the following property: 

(VxK)(Y) = (VrK)(X). 

In particular, any Ricci-parallel three-dimensional manifold is conformally flat. 

Theorem 8.1. Let (M3, g) be a conformallyJIat Riemannian spin manifold with constant 
scalar curvature S # 0 and suppose that it admits a WK-spinor Then S > 0 is positive, 
(M3, g) is an Einstein manifold and the WK-spinor is a Killing spinor 

Proof. Theorem 4.3 yields the necessary condition 

S . Ric2 - lRic12Ric = 0. 

Fix a point in M3 and diagonalize the Ricci operator in the tangent space: 

A 0 0 
Ric = 

( i 

0 B 0 . 
0 0 c 

Then we obtain the system of equations 

(A + B + C)A2 = (A2 + B2 + C2)A, 

(A + B + C)B2 = (A* + B2 + C2)B, 

(A + B + C)C2 = (A2 + B2 + C2)C. 

We discuss now its possible solutions. Suppose first that the rank of the Ricci tensor equals 2, 
A = 0, B # 0 # C. Then we obtain B = C. In this case the equation 8h2{S2 - 21Ric12} = 
S3 yields S = 0, a contradiction. Consequently, the rank of the Ricci tensor equals 1 or 
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3. If A # 0, B # 0 and C # 0, we immediately conclude A = B = C, i.e., M3 is an 
Einstein space with positive scalar curvature S > 0. If the Ricci tensor has rank 1, we have 
IRic12 = S2, and therefore, we obtain h2 = -S/8. We will prove that this case cannot occur. 
Let us fix an orthonormal frame El, E2, E3 diagonalizing the Ricci tensor with A = B = 0 
and C = -2. Denote by Oij the l-forms of the Levi-Civita connection and let CJI ,02, a3 
be the dual frame of the vector fields El, E2, E3. Using the Ricci tensor we obtain the 
following structure equations: 

dw12 = ~13 A 032 - CT~ A 02, 

dwz3 = 0.~1 A 0.~13 + a2 A 03. 

dw13 = W12 A W23 + ~71 A ~73, 

We compute the integrability conditions of this Pfaffian system, and in particular, we obtain 
the condition 

~1 A a2 A 1x13 = 01 A ~2 A 0.~3 = 0. 

Since M3 is conformally flat with constant curvature, its Ricci tensor has the property 
(VxRic)(Y) = (VyRic)(X). This equation yields da3 = 0 and ~13 and 0.~3 are multiples 
of a3. Consequently, ~013 = ~23 = 0, a contradiction. 0 

Remark 8.2. Theorem 8.1 is analogous to Theorem 4.4 in dimension n = 3. The second 
case that S -C 0 is impossible in this dimension. 

Example 8.2. Let M2 be a surface of constant Gaussian curvature G # 0. Then 44’ x S’ 
is conformally flat and does not admit a WK-spinor. 

Example 8.3. The three-dimensional solvable Lie group Sol. The Lie group Sol is an 
extension of the translation group [w2 of the plane 

0 + [w2 + Sol --+ [w’ + 0, 

where the element t E [w acts in the plane via the transformation (x, y) + (e’n, e-‘y). We 
identify Sol with [w3 and then the group multiplication is given by 

(x, y, z) . (2, y’, z’) = (x + e-‘x’, y + e’y’, z + z’). 

With respect to the left invariant metric of Sol 

ds2 = e2’ dX2 + e- 2z dy2 + dz2 

and the orthonormal frame 

El =e-::, E2 =ezz 
ay’ 

E3=$ 

we calculate the Ricci tensor 
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Consequently, the Ricci tensor has rank 1 and S = -2 is constant. Denote by (~1, ~2, a3 the 
frame of l-forms dual to Et, E2, E3. Then 

do1 = -at A ~3, da2 = a2 ~03, do3 = 0, 

and therefore, the l-forms wij of the Levi-Civita connection are given by 

WI2 = 0, WI3 = -01, W23 = ~72. 

We realize the three-dimensional Clifford algebra using the matrices 

EI=(~ _&), E2=(& y), E3=(; ;l). 

Then we have 

El. E2 = E3, E2. E3 = El, 

The covariant derivative of a spinor field 

Vx@ = d@(X) - ;a,(x)E~. E3 

We will solve the equation 

El. E3 = -E2. 

@ : Sol -+ C2 is given by 

.$+ ;02(X)E2.E34,k 

Consider first the case of X = E3. Then we obtain 

and the solution of this equation is 

Hz> = exp@z. Ed . $lo, 

where I++” = e0 (x, y) depends on the variables x and y only. The equations for X = Et, E2 
are 

e-:~-~E,.E3.~=--h.E,.~, ez~~~E,-E3.$=-~.E2.~. 
ax 

The spinor e0 has therefore to be constant and should be a solution of the two algebraic 
equations 

We thus conclude that the three-dimensional solvable Lie group Sol does not admit WK- 
spinors. Notice that any spinor field $(z) = exp(hz Es) . $ro is an eigenspinor of the Dirac 
equation on Sol, D(e) = -A$. 
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The Riematian 3-manifold Sol does not satisfy a further necessary condition for a 3- 
manifold to admit a WK-spinor. In the formulation of this condition we use the vector 
product X x Y of two vector fields on a 3-manifold defined by the formula 

x x Y = (XZY3 - X3Y2)Et + (X3Y’ - X’Y3)Ez + (X’Y2 - X2Y’)E3. 

Then, for all vector fields X, Y and spinor fields + we have 

x . Y . $!I = -g(X, Y)@ - (X x Y) . If?. 

Theorem 8.2. Let (M3, g) be of constant scalar curvature S # 0 and assume that M3 
admits a WK-spinor with WK-number h. Then we have for all 1 5 k < 1 5 3: 

(9 8h2{2Ric(Ek) - SEk} x {2Ric(El) - S&J + 8hS[(VEkRic)(El) 

-(V, Ric)(Ek)} = -S3Ek X El + 2S2 C(Rji6ik + Rik6’jl)Ei X Ej. 
iij 

(ii) 8h2{SRic(X) - 2(Ric o Ric)(X)} - 4hS e E, x (0~~ Ric)(X) 
u=l 

-S2 Ric(X) = 0 

Proof. For shortness we set B := (2h/S) Ric - h Id. Then we have for all 1 F k < 1 i 3: 

R(Ek, EL)($) = -i C RijklEi . Ej . @ 
icj 

= (V,,B>(Ed . + - (V/z,B>(Ek) . @ + B(Q) . B(Ek) . + 
-B(&) . B(C). Ilr. 

Using the properties of the vector product and the formula 

one verifies the first equation. From Theorem 4.1 (i) we immediately obtain the second 
equation. 0 

Corollary 8.1. Let (M3, c$, <, q, g) be a non-Einstein Sasakian spin manifold of constant 
scalar curvature S # 0. Assume that (M3, I$, (, I], g) admits a WK-spinor with WK-number 
h.ThenS=lf&andh=(29~1/J)/2. 

Proof. With respect to an adapted frame (El, E2, E3 = c) we have (see Section 6) 

l-i3 = -r,2, = 1, r:, =r,3,=r~3=r~3=o, 

R11 = Rz = R1212 + 1 = ; - 1, R33 = 2, R12 = R13 = R23 = 0. 
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Furthermore, a direct calculation yields the following formulas for the components Rtj:k 
of the covariant derivative of the Ricci tensor: R23; 1 = - R13;2 = S/2 - 3 (all the other 
Rij;k vanish). Therefore, from Theorem 8.2(i) (in case k = 1 and 1 = 2) and from Theorem 
4.l(ii) we obtain 

32h2 + 8hS(S-6) - S2(S-4) = 0 and S” = 8h2(S2 - 21Kic12) = 32h*(S - 3). 

Using these relations and the fact that (M3, 4, e, tl, g) is non-Einstein (S # 6), we calculate 
S=1~1/5,h=(2f&)/2. 0 

In the three-dimensional case we can prove the existence of Sasakian quasi-Killing spinors 
of type (a, b) with a # &i (see Theorem 6.3). Moreover, we will show that there exists a 
Sasakian quasi-Killing spinor of type (a, b) = (-i(3 + -Js), $(5 + 1/5)) (resp. (a, b) = 
(- i (3 - 6)) 4 (5 - a)) which is a WK-spinor. 

Theorem 8.3. Let ( M3, @,c, q, g) be a Sasakian spin manifold. Zf ( M3, @,4, q, g) admits 
a Sasakian quasi-Killing spinor of type (a, b), then 

either(a,b)=(-i,i-i) or(a,b)= 
i 

-2*y,4FF . 

Proof. Let (Et, E2, E3 = <) be an adapted frame. Then we obtain -b = i (1 - 4a2 - 4ab) 
and S = 24a2 + 16ab from Lemma 6.4(ii). The first equation has two solutions: a = -i 
orb=;-a. 0 

Theorem 8.4. Let (M3, #,l, n, g) be a simply connected Sasakian spin manifold with 
constant scalar curvature S. Then 
(i) there exist two Sasakian quasi-Killing spinors $0, $1 of type (-i, i - iA‘> such that 

$ra is a section in the bundle .& (a! = 0, 1). Unless +O (resp. $1) is a Killing spinol; 
$0 (resp. $1) is not a WK-spinor 

(ii) If S > -2, there exists a Sasakian quasi-Killing spinor @ of type (d (-2 f dw), 
i (4 F dw)). If S = 1 +A, then there exists a Sasakian quasi-Killing spinor $’ of 
type(-$(3+&),:(5+fi)) h’h w zc is a WK-spinor with WK-number $ (2 + A). Zf 
S = 1 - l/s, then there exists a Sasakian quasi-Killing spinor y?” of type (- 4 (3 - A), 
;(5 - z/J)) h h w ic is a WK-spinor with WK-number i (2 - 6). 

Proof. Let us introduce a connection 7 by the formula 

ox@ := Ox+ -ax. I++ - bn(X)c . $r (a, b E iw). 

In a first step we will show that 7 is a connection in Co (resp. Et) if and only if a = -if 
We shall only treat the case of Zu, the second case is similar. The bundle _& is defined by 
one of the equivalent conditions: 

c . cp = --&iv or f+(X) . (p + J-ix . p - n(X)(p = 0 for all vectors X. 
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For any section @ in this bundle we calculate 

~.vxllr=~.(Vx~-aX.Ilr-by(X)~.~/) 
= Vx(t . @> - VxC; . + + ax. 6 . + + 2arl(X>llr + bv(X)@ 
= -l/-lVx$ +4(X>. + - al/-lx. @ + (2a + bh(X)$ 

= -&iv,@ - 2/-1X. +h + q(X)+ - az/-lX. Q + (2a + b)q(X)$ 

= -&~{VX$ + (a + 1)X. @ - (2a + b + l)q(X)4 . $1. 

Thus VX $ is a section in the bundle ZO if and only if -a = a + 1 and -b = -(2a + b + l), 
i.e., a = -i. As for the second step, we claim that the curvature tensor x(X, Y)(q) := _- -- 
VxVyqo - VYVX(P - vlx,yl~ vanishes identically in C = CO ~3 Zt if and only if (a, b) = 
(-$, i - 4s) or (a, 6) = (i(-2 f ,/m), i(4 =F dm)). A direct calculation 
yields the formula 

R(X, Y)(v) = R(X, Y)(q) + a2(X. Y - Y. X) . cp - 2bg(X, @Y)c . q 

-2aby(X)Y. t . cp + 2abrlCY)X. t . v + bq(Y)@(X) . cp 

-%(-WV). GO. 

Using Rt313 = R2323 = 1 and Rt2t2 = ;S - 2 we obtain 

R(Et , &9(q) = i(S - 1 - 2a2 + 2b)E3 . p, 

R(E1, E3)(p) = (-$ + 2a2 + 2ab + b)Ez . (o, 

?F(E2, Es)(q) = (i - 2a2 - 2ab - b)El . cp. 

Thus x(X, Y)(p) vanishes identically in Z if and only if 

$S - 1 - 2a2 + 2b = -i + 2a2 + 2ab + b = 0. 

We first consider the case that (a, b) = (- 4, $ - i S). By the first and second step there exist 
non-trivial V-parallel sections @u E T(&) and $1 E r(Et), i.e., @o and $1 are Sasakian 
quasi-Killing spinors of type (a, b) = (-i, i - is). Suppose that @ is a Sasakian quasi- 
Killing spinor of the type (a, b) = (- $, a - 4 S) which is a WK-spinor with WK-number 
h. Inserting Ric = (:S - 1)g + (3 - iS)q @ n and h = (S + 6)/8 into 

0x1) = $Ric(X) . $ -LX. $ = -$X . $ + yn(X)c 9 $, 

we obtain 

2(S + 6) x -~. 
8s 

~ + (S + 6)(6 - S) 
8s 

Therefore, S = 6 and (M3, @,c, r], g) is Einstein. All in all, we have proved the first 
part (i) of our theorem. Now we consider the case that (a, b) = (i(-2 f &?%), 
$(4 7 J4fzs)). Again, there exists a non-trivial section $ E r(Z = Zo $ Cl) 
with o@ = 0, i.e., 1c/ is a Sasakian quasi-Killing spinor of type (&(-2 f &??S), 
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i(4 F ,/w)). In particular, in case S = 1 + &, there exist a Sasakian quasi-Killing 
spinor 40’ of type (- 4 (1 - a), 4 (3 - l/s)) and a Sasakian quasi-Killing spinor @’ of type 
(- $(3 + z/J>, $ (5 + a)). By direct calculation one verifies that $I’ is a WK-spinor with 
WK-number :(2 + z/J) (q’ is not a WK-spinor). Similarly, in case S = 1 - 2/5, there 
exists a Sasakian quasi-Killing spinor $” of type (- $(3 - l/s), i(5 - z/J)) which is a 
WK-spinor with WK-number $ (2 - A). 0 

Remark 8.3. Let ( M3, 4, t, 17, g) be a three-dimensional simply connected Sasakian spin 
manifold with constant scalar curvature S > -2. Then there exists a deformation (r3, & 

F, v, 3 of the Sasakian structure with a = Ja/m (in this case ? = 1 f fi, see 
Lemma 6.8(ii)) such that (G, 6, r, ij’, 3 admitsa WK-spinorwith WK-number 4 (2 f 2/5). 

Example 8.4. Let (S3, g) be the standard sphere of constant sectional curvature 1. Fix a 
global orthonormal frame (El, E2, E3) such that 

[El, E21 = 2E3, [E2, E31 = 2E1, [E3, El1 = 2452. 

We define a (1, I)-tensor field 4 : T(S3) + T(S3) by @(El) = E2, r#~(E2) = -El and 
@(E3) = 0. Then (4, f = E3, n = E3, g) is a Sasakian structure on the round sphere 
S3, which can be deformed into a family of Sasakian structures depending on a positive 
parameter such that (see Lemmas 6.7 and 6.8): 

&z=(4a2-2)F+4(1-a2)?j’@v, F=8a2-2. 

If a2 = i(3 % a), we have F = 1 f & and hence, by Theorem 8.4, the deformed 

Sasakian metric (3, F, r, ;i, 3 admits a WK-spinor with WK-number h = i(2 f z/J). 

Example 8.5. Let us consider the three-dimensional non-compact manifold (SL(2, [w), g) 
with the global orthonormal frame (El , E2, E3): 

E,:=(; _:), E2:=(; ;), E3:=(nl ;) 

Wedefinea(l, 1)-tensorfield : T(SL(2, [w)) - T(SL(2, R))by@(Et)=Ez, $(E2)= 

-El and @(E3) = 0. Then (4, c = E3, n = E3, g) is a Sasakian structure on SL(2, rW) 
with Ricci tensor RII = R22 = -6, R33 = 2. The deformation of this Sasakian structure 
has the following Ricci tensor: 

G = (-4a2 - 2)g + 4(1 + a2)ij@ ;i, 3: = -8a2 - 2. 

Since F = -8a2 - 2 # 1 - fi for all a E Iw, any deformed Sasakian manifold 
(SL(2, I%), $, r, v, 3 does not admit a WK-spinor (see Corollary 8.1). 

Including the group E(2) of all motions of the Euclidean plane there are nine classical 
three-dimensional geometries. In Table 1 we list the types of their special spinors. 

Remark 8.4. Probably there are three-dimensional Riemannian spin manifolds of con- 
stant scalar curvature admitting WK-spinors that do not arise from an underlying contact 
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Table I 
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Space Spinor 

Nil 
Sol 
E(2) 

Parallel apinor 
Imaginary Killing ‘ywr 
Real Killing spinor. WK-spinor 
No WK-spinor 
No WK-spinor 
No WK-spmor 
No WK-spmnr 
No WK-spinor 
No WK-spinor 

structure. However we do not know an explicit metric of this type. It turns out that the 
existence of a WK-spinor on a three-dimensional manifold imvlies the existensr of a vector 
field 4 of length I such that its covariant derivative VX.$ is completely determined by the 
Ricci tensor of the mnn~fold. More generally, let (M”. g) be a three-dimen.rroncJ Riemnn- 
man spin manifold with afixed (1, 1)-tensor A : T(hf3) -+ T(M3). Any solution $ of the 
differential equation 

Vx$ = A(X). 1cI 

defines a vector,field c of length 1 such that 

V,< = 2c x A(X). 

Indeed, given the spinorfield + we define the vector,field t b:j thebfrmulu 

Differentiating the equation Ox+ = A(X) . @ we immediately obtain the differential 
equation for the vector field 6. conversely, if 4 is a vector_field of Iengib 1 WC define the 
one-dimensional subbundle Co of the spinor bundle Z(M3) by the ol,gehro+ equation 

TheformulaVx$ := V,y$--A(X).@dfi e nes a connection 0 in the bundle Co. Nowever 
the integrability condition of the equation VX~ = 2 c x A(X) is not equivulent to the 
fact that (Co, “J) is a flat bundle. We apply now this general remark to the srrunti<>il of a 
WK-spinor and obtain the following corollary. 

Corollary 8.2. Let (M”, g) be a three-dimensional Riemanni~m Sc;>iri mrrrrifoid tz,‘~:~ansttmt 
sraior curvature S # 0 and suppose that the length of the Ricci tensor IRicJ’ # is2 is 
constant too. [f M’ admits a WK-spinor, then there exists a vector$eld c such that 

‘x6 = *ji I S 
2(S2 - 21Ricj2)’ x 

zRic(X) - X 
S 

holds for all vectors X E T ( M3). 
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We finish this section by showing the existence of a WK-spinor on a three-dimensional 
conformally flat manifold that has non-constant scalar curvature (see Theorem 8.1). 

Example 8.6. Let (R3, g) be the three-dimensional Euclidean space with the standard flat 
metric. Let us denote by (el , ~2, e3) the standard basis of R3 and by (x, y, z) the coordinates. 
We now consider a conformally equivalent metric g := eF2’:g, c # 0 E R. We denote by 
(FL, &, 73) the global orthonormal frame on (W3, 3 with & = el , z2 = e2, z3 = e’:ej. By 
a direct calculation one verifies that 

?;1: = F;3 = -ce”’ and all the other Christoffel symbols vanish, 
_ N 

2 k RII=R22=-ce , i33 = El2 = &3 = & = 0 9 
2 = -2c2e2cz, z.3 = -4c3e3cz, S 1 = y,2 = 0, 

where ?,k denotes the directional derivative of the scalar curvature S toward $. Therefore, 
the WK-equation on (W3, 3 is expressed as 

VT, $ = ieczF2 . ij, @--$Y = _:eczF, . 3, Ty3iJ = ce”-iJ - AT3.5, 

where 7 = (u(x, y, z), u(x, y, 2)) is a spinor field on (d, 3. We can choose 6 so that 
J = (u(z), V(Z)) depends only on the third coordinate z. Then the first two equations are 
always satisfied and the WK-equation reduces to 

+? & = T,3 = ctTz$ - AZ3 . 6. 

The solution is given by h = fc and 

u = peCZ(sin(e-“i) + &icos(e-‘z)), 

21= &pe’Z{cos(e-‘“) - Gisin(e-C”)), 

where p # 0 E @ is a complex number. Thus 6 = (“,) is a WK-spinor on (R3, j$ with 
WK-number kc. 
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